3-ta`rif: Berilgan (1) qatorning yaqinlashish nuqtalari to`plamiga qator-ning yaqinlashish sohasi deyiladi.
(1)- funktsional qator uchun xususiy yig`indilar ketma–ketligini tzish mumkin:
S1(x), S2(x), S3(x),…, Sn(x),…
Bunda Sn(x)=U1(x)+ U 2(x)+…+ U n(x) dir.
(1) funktsional qator yaqinlashish sohasining har bir x nuqtasida qatorning f(x) yig`indisi n→ ∞ da xususiy yig`indisi ketma – ketlikning limitiga teng bo`ladi:
(3)
4 –ta`rif: (4)
qatorning (5)
qismiga (1) qatorning n – qoldig`i deyiladi.
Agar qoldiq had yig`indilarini Rn (x) bilan belgilasak, ya`ni
(6)
u holda, (7)
o`rinli bo`lib, n→ ∞ da Rn(x)→0 bo`ladi. (1) ning yaqinlashish sohasi (6) ning ham yaqinlashish sohasi bo`ladi.
(7) tenglikdan quyidagi tenglikni hosil qilamiz:
(8)
Bunda absolyut xatodan iborat bo`lib, o`rinli bo`ladi.
Do'stlaringiz bilan baham: |