Мавзу чизиқли тенгламалар системасининг умумий назарияси. Кронекер-Капелли теорэмаси Доц. Рўзимуродов Ҳ


-nchi ustunini ga, 2-nchi ustunini ga



Download 302,22 Kb.
bet5/12
Sana30.06.2022
Hajmi302,22 Kb.
#719537
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
Chiziqli tenglamalar sistemasining umumiy nazariyasi

1-nchi ustunini ga,

2-nchi ustunini ga

va hakoza,

- nchi ustunini ga

ko’paytirib, ularning hammasini -nchi ustunga qo’shib yuboramiz. Natijada quyidagi matrisani hosil qilamiz:

 111

=

 

=

Elementar almashtirishlar haqidagi teoremaga asosan C matrisaning rangi B matrisaning rangiga teng. Lekin C matrisaning rangi A matrisaning ham rangiga teng, chunki, nollardan iborat ustunning qo’shilishi A matrisaning rangini o’zgartirmaydi.

Elementar almashtirishlar haqidagi teoremaga asosan C matrisaning rangi B matrisaning rangiga teng. Lekin C matrisaning rangi A matrisaning ham rangiga teng, chunki, nollardan iborat ustunning qo’shilishi A matrisaning rangini o’zgartirmaydi.

Shunday qilib, .

Yetarliligi. Endi (1) sistemaning asosiy va kengaytirilgan matrisalarining ranglari teng bo’lsin.

.

Umumiylikka zarar keltirmasdan va qulayligi uchun A matrisaning rangini aniqlaydigan r-tartibli minor matrisaning yuqori chap burchagida joylashgan bo’lsin deb olamiz, yani

 

U holda B matrisaning dastlabki -satri chiziqli bog’lanmagan bo’ladi, chunki bu matrisaning rangi ga teng, B matrisaning qolgan ta satrlari dastlabki -ta satrlari orqali chiziqli ifodalanadi. Bu esa (1) sistemaning dastlabki –ta tenglamasi chiziqli bog’lanmaganligini, qolgan ta tenglamalari esa ularning chiziqli kombinasiyalaridan iborat ekanligini anglatadi. Demak, ChTSlarning elementar almashtirishlari yordamida keyingi ta tenglamalar nolga aylantirilishi mumkin. Bu holda (1) sistemada ta tenglama qoladi. Bizga shu –ta tenglamadan iborat bo’lgan sistemani yechish yetarli. Topilgan yechimlar qolgan ta tenglamalarni ham qanoatlantiradi.

U holda B matrisaning dastlabki -satri chiziqli bog’lanmagan bo’ladi, chunki bu matrisaning rangi ga teng, B matrisaning qolgan ta satrlari dastlabki -ta satrlari orqali chiziqli ifodalanadi. Bu esa (1) sistemaning dastlabki –ta tenglamasi chiziqli bog’lanmaganligini, qolgan ta tenglamalari esa ularning chiziqli kombinasiyalaridan iborat ekanligini anglatadi. Demak, ChTSlarning elementar almashtirishlari yordamida keyingi ta tenglamalar nolga aylantirilishi mumkin. Bu holda (1) sistemada ta tenglama qoladi. Bizga shu –ta tenglamadan iborat bo’lgan sistemani yechish yetarli. Topilgan yechimlar qolgan ta tenglamalarni ham qanoatlantiradi.


Download 302,22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish