Mavzu: Asimptotik analizga murojaat usullari. Mummolar & yechimlar



Download 31,11 Kb.
bet6/9
Sana20.07.2022
Hajmi31,11 Kb.
#828330
1   2   3   4   5   6   7   8   9
Bog'liq
Mustaqil ish

f(n)=2n^2+ 3n+1=O(n^2) (2)


  • f(n)=2n^2+ 3n+1=O(n^2) (2)

  • U holda g(n)=n^2 funksiyani tarifdagi funksiya sifatida oluvchi funksiyalardan biri deb xisoblash mumkin. Ta’rifga asosan, c va N lar uchun quyidagi rasmdagi sonlar juftliklarini olish mumkin bo’ladi. (2) funksiya uchun c va N larning qiymatlari.

N va c ning qiymatlarini аniqlash


  • N va c ning bunday qiymatlarini quyidagi tengsizlikni yechish orqali aniqlanadi:

  • 2n^2+3n+1<=cn^2; (3)

  • Undan tashqari n ning darajalari bo’yicha ham assimptotik funksiyalarni juda ko’pini olish mumkin. Bu holda eng kichik tartiblisi tanlab olinadi. Bunday noaniqliklarni xal qilish berilgan funksiyadagi kichik tartibli xadlarni barchasini tashlab yuborish va quyidagicha belgilash orqali amalga oshiriladi. Masalan, (1) funksiya uchun

  • f(n)=n^2+100n+O(log10n)

  • ko’rinishda olish , (2) funksiya uchun esa f(n)=2n^2+O(n) kabi ko’rinishda olish mumkin bo’ladi.

O- katta funksiyalarning xossalari


  • Tranzitivlik. Agar f(n) funksiya O(h(n)) bo’lsa, u holda сf(n) funksiya O(h(n)) bo’ladi.

  • Agar f(n) va g(n) funksiyalarning xar biri O(h(n)) bo’lsa, u holda ularning yig’infisi f(n)+g(n) ham O(h(n)) bo’ladi.

  • f=an^k funksiya O(n^k) bo’ladi.

  • f=n^k funksiya ixtiyoriy j>=0 uchun O(n^k+j) bo’ladi.

Agar f(n)=Cg(n) bo’lsa, u holda f(n) funksiya O(g(n)) bo’ladi. Ihtiyoriy a teng emas 1, b teng emas 1 sonlar uchun log(an) funksiya O(log(bn)) bo’ladi.

O- notasiya yordamida funksiyani yuqoridan assimptotik baxolashni ko’rdik. Xuddi shunday baxolashni quyidan ham berish mumkin. Bunday baholashni sigma(Ω) baholash deyiladi va u quyidagicha aniqlanadi:


Download 31,11 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish