86
, 2130-3.
Hall, G.G.: 1951, ‘The molecular-orbital theory of chemical valency. VIII. A method
of calculating ionization
potentials’
,
Proceedings of the Royal Society A
,
205
,
541-52.
Hall, G.G.: 1976, ‘A new formulation of the correlation problem’, in: J-L. Calais, O.
Goscinski, J. Linderberg, Y. Öhrn (eds.),
Quantum science
, New York:
Springer Science, pp. 433-44.
Harris, F.E. & Michels, H.: 1967, ‘The evaluation of molecular integrals for Slater-
type orbitals’, in: I. Prigogine (ed.),
Advances in Chemical Physics, volume 13
,
New York: Wiley, pp. 205-66.
Hose, G. & Kaldor, U.: 1982, ‘Quasidegenerate perturbation theory’,
The Journal of
Physical Chemistry,
86
, 2133-53.
Huzinaga, S.: 1965, ‘Gaussian-type functions for polyatomic systems’,
The Journal of
Chemical Physics
,
42,
1293-303.
Jensen, B.R. & Linderberg, J.: 1999, ‘Propagation matrices from the finite element
method’,
The Journal of Physical Chemistry A
,
103
, 9475-8.
Klein, D.J. & Pickett, H.M.: 1976, ‘Nodal hypersurfaces and Anderson’s random-
walk simulation of the Schroedinger equation’,
The Journal of Chemical Phys-
ics,
64
, 4811-2.
Kotani, M.; Amemiya, A.; Ishiguro, E. & Kimura, T.: 1955,
Tables of molecular inte-
grals,
Tokyo: Maruzen, pp. 1-328.
64
Douglas J. Klein
Kryachko, E.S. & Ludena, E.V.: 1991, ‘Formulation of
N
- and
v
-representable density
functional theory. VIII’,
The Journal of Chemical Physics,
95
, 9054-9.
Kutzelnigg, W.; Shamasundar, K.R. & Mukherjee, D.: 2010, ‘Spin free formulation of
reduced density matrices, density cumulants, and generalized normal order-
ing’,
Molecular Physics,
108
, 433-51.
Lefebvre, R. & Moser, C.: 1969,
Advances in Chemical Physics: Correlation effects in
atoms and molecules
, vol. 14, New York: Interscience Pub., pp. 1-546.
Löwdin, P.O.: 1955, ‘Quantum theory of many-particle systems. I. Physical interpre-
tations by means of density matrices, natural spin-orbitals and convergence
problems in the method of configuration interaction’,
Physical Review
,
97
,
1474-89.
Mishra, M.; Froelich, P. & Öhrn, Y.: 1981, ‘The dilated electron propagator: a bi-
orthogonal approach’,
Chemical Physics Letters,
81
, 339-46.
Nakatsuji, H.: 1999, ‘Equation for the direct determination of the density matrix:
Time-dependent density equation and perturbation theory’,
Theoretical Chem-
istry Accounts,
102
, 97-104.
Nooijen, M. & Bartlett, R.J.: 1997, ‘Similarity transformed equation-of-motion cou-
pled-cluster theory: Details, examples, and comparisons’,
The Journal of
Chemical Physics,
107
, 6812-30.
Paldus, J & Čížek, J.: 1971, ‘Stability conditions for the solutions of the Hartree-Fock
equations for atomic and molecular systems. IV. Doublet stability for odd lin-
ear polyenic radicals’,
The Journal of Chemical Physics,
54
, 2293-303.
Poshusta, R.D. & Browne, J.C.: 1962, ‘Quantum-mechanical integrals over Gaussian
atomic orbitals’,
The Journal of Chemical Physics,
36
, 1933-7.
Primas, H.: 1965,
Separability in many-electron systems
, New York: Academic Press, p.
45-74.
Redmond, L.T.; Purvis, G. & Öhrn, Y.: 1975, ‘Higher-order decoupling of the elec-
tron propagator’,
The Journal of Chemical Physics,
63
, 5011-7.
Reynolds, P.J.; Ceperley, D.M.; Alder, B.J. & Lester, W.A.: 1982, ‘Fixed-node quan-
tum Monte Carlo for molecules’,
The Journal of Chemical Physics,
Do'stlaringiz bilan baham: |