Математический анализ – это часть математики, в которой функции и их обобщения изучаются методом пределов


§ 6. Монотонные последовательности. Число



Download 1,71 Mb.
bet12/19
Sana13.07.2022
Hajmi1,71 Mb.
#789181
TuriЛитература
1   ...   8   9   10   11   12   13   14   15   ...   19
Bog'liq
рационал сонлар кесими сечение рациональнқх чисел

§ 6. Монотонные последовательности. Число е


Определение 1. Последовательность называется убывающей (невозрастающей), если для всех выполняется неравенство .
Определение 2. Последовательность называется возрастающей (неубывающей), если для всех выполняется неравенство .
Определение 3. Убывающие, невозрастающие, возрастающие и неубывающие последовательности называются монотонными последовательностями, убывающие и возрастающие последовательности называют также строго монотонными последовательностями.
Очевидно, что неубывающая последовательность ограничена снизу, невозрастающая последовательность ограничена сверху. Поэтому всякая монотонная последовательность заведомо ограничена с одной стороны.
Пример 1. Последовательность возрастает, не убывает, убывает, не возрастает, – немонотонная последовательность.
Для монотонных последовательностей важную роль играет следующая
Теорема 1. Если неубывающая (невозрастающая) последовательность ограничена сверху (снизу), то она сходится.
Доказательство. Пусть последовательность не убывает и ограничена сверху, т.е. и множество ограничено сверху. По теореме 1 § 2 существует . Докажем, что .
Возьмем произвольно. Поскольку а – точная верхняя граница, существует номер N такой, что . Так как последовательность неубывающая, то для всех имеем , т.е. , поэтому для всех , а это и означает, что .
Для невозрастающей последовательности, ограниченной снизу, доказательство проводится аналогично (студенты могут доказать это утверждение дома самостоятельно). Теорема доказана.
Замечание. Теорему 1 можно сформулировать иначе.
Теорема 2. Для того чтобы монотонная последовательность сходилась, необходимо и достаточно, чтобы она была ограничена.
Достаточность установлена в теореме 1, необходимость – в теореме 2 § 5.
Условие монотонности не является необходимым для сходимости последовательности, так как сходящаяся последовательность не обязательно монотонна. Например, последовательность не монотонная, однако сходится к нулю.
Следствие. Если последовательность возрастает (убывает) и ограничена сверху (снизу), то ( ).
Действительно, по теореме 1 ( ).
Определение 4. Если и при , то последовательность называется стягивающейся системой вложенных отрезков.
Теорема 3 (принцип вложенных отрезков). У всякой стягивающейся системы вложенных отрезков существует, и притом единственная, точка с, принадлежащая всем отрезкам этой системы.
Доказательство. Докажем, что точка с существует. Поскольку , то и, следовательно, последовательность не убывает, а последовательность не возрастает. При этом и ограничены, так как . Тогда по теореме 1 существуют и , но так как , то = . Найденная точка с принадлежит всем отрезкам системы, так как по следствию теоремы 1 , , т.е. для всех значений n.
Покажем теперь, что точка с – единственная. Предположим, что таких точек две: с и d и пусть для определенности . Тогда отрезок принадлежит всем отрезкам , т.е. для всех n, что невозможно, так как и, значит, начиная с некоторого номера, . Теорема доказана.
Отметим, что здесь существенно то, что рассматриваются замкнутые промежутки, т.е. отрезки. Если рассмотреть систему стягивающихся интервалов, то принцип, вообще говоря, неверен. Например, интервалы , очевидно, стягиваются в точку , однако точка не принадлежит ни одному интервалу этой системы.
Рассмотрим теперь примеры сходящихся монотонных последовательностей.
1) Число е.
Рассмотрим теперь последовательность . Как она себя ведет? Основание
степени , поэтому ? С другой стороны, , а , поэтому ? Или предел не существует?
Чтобы ответить на эти вопросы, рассмотрим вспомогательную последовательность . Докажем, что она убывает и ограничена снизу. При этом нам будет нужна
Лемма. Если , то для всех натуральных значений n имеем

(неравенство Бернулли).
Доказательство. Воспользуемся методом математической индукции.
Если , то , т.е. неравенство верно.
Предположим, что оно верно для и докажем его справедливость для +1.
Верно . Умножим это неравенство на :
.
Таким образом, . Значит, согласно принципу математической индукции, неравенство Бернулли верно для всех натуральных значений n. Лемма доказана.
Покажем, что последовательность убывает. Имеем
‌‌‌׀неравенство Бернулли׀ ,а это и означает, что последовательность убывает.
Ограниченность снизу следует из неравенства ‌‌‌׀неравенство Бернулли׀ для всех натуральных значений n.
По теореме 1 существует , который обозначают буквой е. Поэтому .
Число е иррационально и трансцендентно, е = 2,718281828… . Оно является, как известно, основанием натуральных логарифмов.
Замечания. 1) Неравенство Бернулли можно использовать для доказательства того, что при . Действительно, если , то . Тогда, по неравенству Бернулли, при . Отсюда при имеем , то есть при .
2) В рассмотренном выше примере основание степени стремится к 1, а показатель степени n – к , то есть имеет место неопределенность вида . Неопределенность такого вида, как мы показали, раскрывается с помощью замечательного предела .
2) (*)
Докажем, что эта последовательность сходится. Для этого покажем, что она ограничена снизу и не возрастает. При этом воспользуемся неравенством для всех , которое является следствием неравенства .
Имеем см. неравенство выше , т.е. последовательность ограничена снизу числом .
Далее, так как  , т.е. последовательность не возрастает.
По теореме 1 существует , который обозначим х. Переходя в равенстве (*) к пределу при , получим
, т.е. , откуда (берем знак «плюс», так как все члены последовательности положительны).
Последовательность (*) применяется при вычислении приближенно. За берут любое положительное число. Например, найдем . Пусть . Тогда , . Таким образом, .

3) .


Имеем . Поскольку при , существует номер N, такой, что для всех выполняется неравенство . Таким образом, последовательность , начиная с некоторого номера N, убывает и ограничена снизу, так как для всех значений n. Значит, по теореме 1 существует . Поскольку , имеем .
Итак, .
4) , справа – n корней.
Методом математической индукции покажем, что для всех значений n. Имеем . Пусть . Тогда , отсюда получаем утверждение по принципу математической индукции. Используя этот факт, находим , т.е. последовательность возрастает и ограничена сверху. Поэтому существует , так как .
Таким образом, .



Download 1,71 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   19




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish