Пусть функция f(x) определена и не ограничена на полусегменте (a, b], но ограничена на любом сегменте [a + δ, b] ⊂ (a, b]. Точку a назовем особой точкой функции f(x). Ясно, что функция f(x) не интегрируема по Риману на (a, b]. Предположим, что функция f(x) интегрируема на любом сегменте [a + δ, b] и рассмотрим
(7)
Не зависимо от того, существует этот предел или нет, назовем его несобственным интегралом 2 рода от функции f(x) по полусегменту (a, b] и будем обозначать так же, как определенный интеграл R b a f(x) dx. Если этот предел существует, то говорят, что несобственный интеграл сходится, а если не существует — расходится. Геометрический смысл несобственного интеграла второго рода: если f(x) > 0 на (a, b], то есть площадь бесконечной вверх криволинейной трапеции.
Замечание 1. Аналогично определяются несобственный интеграл второго рода: а) по полусегменту [a, b), если b — особая точка; б) по интервалу (a, b), если a и b — особые точки (и других особых точек на [a, b] у функции f(x) нет):
(8)
2. Если особой точкой функции f(x) является внутренняя точка c сегмента [a, b] и других особых точек нет, то по определению полагают:
(9)
Если оба предела существуют (хотя бы один не существует), то говорят, что несобственный интеграл сходится (расходится).
3. Если на сегменте [a, b] функция f(x) имеет несколько особых точек, то несобственный интеграл определяется как сумма несобственных интегралов по полусегментам и сегментам, у которых одна или обе граничные точки — особые.
Признаки сходимости несобственных интегралов.
Для несобственных интегралов второго рода имеют место признаки сходимости, аналогичные признакам сходимости несобственных интегралов первого рода. Сформулируем некоторые из них для несобственных интегралов, по полусегменту (a, b], где a — единственная особая точка подынтегральных функций.
1.Критерий Коши. Для того чтобы несобственный интеграл сходился, необходимо и достаточно, чтобы такое, что , удовлетворяющих условию , выполнялось неравенство:
2. Признак сравнения. Если 0 ≤ f(x) ≤ g(x) при a < x ≤ b, то из сходимости интеграла
(10)
следует сходимость интеграла
(11)
а из расходимости интеграла (10) следует расходимость интеграла (11).
Понятия абсолютной и условной сходимости для несобственных интегралов второго рода формулируются так же, как и для несобственных интегралов первого рода. Для доказательства условной сходимости также можно использовать следующий признак Дирихле, аналогичный признаку Дирихле сходимости несобственных интегралов первого рода.
3.Признак Дирихле.
Пусть
1. функция f(x) непрерывна на (a, b] и имеет на этом промежутке ограниченную первообразную F(x);
2. функция g(x) не убывает на (a, b], стремится к нулю при x → a+0 (g(x) ↓ 0 при x → a + 0) и имеет непрерывную производную на (a, b].
Тогда несобственный интеграл сходится.
Если промежуток интегрирования является бесконечным и функция f(x) имеет на этом промежутке конечное число особых точек, то интеграл (несобственный) от функции f(x) по этому промежутку представляется в виде суммы несобственных интегралов первого и второго рода. Если все эти интегралы сходятся, то говорят, что исходный интеграл сходится, и полагают его равным сумме этих несобственных интегралов.
Do'stlaringiz bilan baham: |