Лекция №1. Проецирование простых геометрических объектов 4


Лекция №4. Кривые поверхности. Поверхности вращения



Download 4,88 Mb.
bet21/40
Sana22.06.2022
Hajmi4,88 Mb.
#690758
TuriЛекция
1   ...   17   18   19   20   21   22   23   24   ...   40
Bog'liq
курс лекций по НГ

Лекция №4. Кривые поверхности. Поверхности вращения


Кривыми называются поверхности, у которых по крайней мере либо образующая, либо направляющая представляют собой кривую линию.


В промышленности, особенно машиностроении, наиболее объемный класс составляют поверхности вращения.


4.1. Поверхности вращения


Пусть произвольная линия AGEB вращается вокруг оси i. Тогда она образует поверхность вращения (рис. 4.1).



Рис. 4.1. Образование поверхности вращения.

Линия пересечения поверхности вращения плоскостью, проходящей через ось i, называется меридианом (например A*G*E*B*). Меридиан, лежащий в плоскости, параллельной П2, называется главным. Линия пересечения поверхности вращения плоскостью, перпендикулярной оси i, называется параллелью. Таковыми являются направляющие, проходящие через точки АА*, ВВ*, ЕЕ*, GG*. Параллель, проходящая через наиболее удаленную от оси точку Е образующей, называется экватором, а через самую близкую точку G – горлом. Очевидно, что все параллели представляют собой окружности.


Одной из самых простых поверхностей вращения является цилиндр. Цилиндрическая поверхность образуется при вращении прямой (образующей) АВ вокруг оси (рис. 4.2, а). Образование цилиндрической поверхности подобно получению призматической с той лишь разницей, что у гранной поверхности направляющей является ломаная линия.

Рис. 4.2. Образование поверхности цилиндра, конуса, сферы.

В случае образования конической поверхности прямая AS, вращающаяся вокруг оси, закреплена в некоторой точке S на оси (рис. 4.2, б). Такая поверхность подобна пирамидальной, у которой образующей является тоже прямая, но перемещающаяся по ломаной линии. Для того, чтобы получить цилиндр или конус, надо соответствующую поверхность ограничить плоскостями основания.


Если в качестве образующей выбираем окружность, то при ее вращении вокруг оси получаем:
сферу, когда ось вращения проходит через центр О окружности (рис. 4.2, в);
тор, в противном случае (рис. 4.3).
Если ось вращения проходит через образующую–окружность, тор получается закрытым (рис. 4.3, а), в противном случае-открытым (рис. 4.3, б). Примером открытого тора может служить бублик, закрытого – яблоко либо лимон.

Рис. 4.3. Образование поверхности тора.



Download 4,88 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   40




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish