Лекция №1. Проецирование простых геометрических объектов 4


Лекция №2. Плоскость. Позиционные и метрические задачи на плоскости



Download 4,88 Mb.
bet9/40
Sana22.06.2022
Hajmi4,88 Mb.
#690758
TuriЛекция
1   ...   5   6   7   8   9   10   11   12   ...   40
Bog'liq
курс лекций по НГ

Лекция №2. Плоскость. Позиционные и метрические задачи на плоскости




2.1. Плоскость и ее задание на чертеже


Плоскость является простейшей поверхностью, которую можно представить как веер линий, полученных при движении прямой (образующей), закрепленной в некоторой точке, по другой прямой (направляющей). В дальнейшем мы увидим, что и образующая, и направляющая могут быть не прямыми линиями.


Положение плоскости в пространстве может быть однозначно определено одним из хорошо известных в геометрии элементов (прямой и точкой). В соответствии с этим плоскость может быть задана одним из шести способов:
а) тремя точками, не лежащими на одной прямой;
б) прямой и точкой, не лежащей на этой прямой;
в) двумя параллельными прямыми;
г) двумя пересекающимися прямыми;
д) плоской фигурой.
Тогда на чертеже (рис. 2.1) проекции плоскости выглядят, как проекции соответствующих геометрических объектов — точек и прямых, — которыми они заданы.

Рис. 2.1. Безосный двухкартинный комплексный чертеж геометрических объектов, задающих плоскость.




2.2. Плоскости частного и общего положения


Плоскостью частного положения называется плоскость, занимающая частное положение в пространстве, т.е. параллельная или перпендикулярная одной из плоскостей проекций.




Плоскости уровня

Плоскостью уровня называется плоскость, параллельная одной из плоскостей проекций, а следовательно, перпендикулярная двум другим. Тогда проекциями плоскости уровня будут прямые, параллельные соответствующим осям (рис. 2.2), вне зависимости от того, чем задана плоскость. От способа задания плоскости зависит лишь ее проекция на ту плоскость проекций, которой заданная плоскость параллельна.


Плоскость, параллельная П1, называется горизонтальной плоскостью уровня ( Г ). На рис. 2.2, а она задана тремя точками .

Рис. 2.2. Плоскости уровня на комплексном чертеже.


Плоскость, параллельная П2, называется фронтальной плоскостью уровня ( Ф ). Зададим ее параллельными прямыми (рис. 2.2, б). Причем, очевидно, расстояние от Ф1 до ОХ равно расстоянию от Ф3 до ОZ.


Плоскость, параллельная П3, называется профильной плоскостью уровня ( Р ). Считаем ее заданной пересекающимися прямыми (рис. 2.2, в).


Проецирующие плоскости

Проецирующей называется плоскость, перпендикулярная одной из плоскостей проекций. Исходя из определения, такая плоскость вырождается в прямую при проецировании на ту плоскость проекций, к которой она перпендикулярна.


Горизонтально-проецирующей называется плоскость, перпендикулярная П1, фронтально-проецирующей – перпендикулярная П2, и профильно-проецирующей – плоскость, перпендикулярная П3. На чертеже, первая из них задана плоской фигурой (рис. 2.3, а), вторая – точкой и прямой (рис. 2.3, б), третья - двумя параллельными прямыми (рис. 2.3, в).

Рис. 2.3. Проецирующие плоскости на комплексном чертеже.
Плоскость общего положения

Плоскостью общего положения называется плоскость, не перпендикулярная и не параллельная ни одной из плоскостей проекций, а значит, расположенная под произвольным углом к каждой из них.


У такой плоскости все проекции будут невырожденные. Например, если плоскость общего положения задана плоской фигурой (треугольником), то все три проекции ее будут треугольниками (рис. 2.4).


Рис. 2.4. Плоскость общего положения, заданная треугольником



Download 4,88 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   40




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish