Диэлектриками являются неионизованные газы, а также жидкости и твердые тела, характеризующиеся полностью заполненной электронами валентной зоной и полностью электронной на уровне зоны проводимости не происходит, то такие вещества ведут себя как изоляторы. При наличии такого возбуждения (в случае малой энергетической щели между зонами) вещества являются полупроводниками. Диэлектрики и полупроводники экспоненциально уменьшают свое электрическое сопротивление при повышении температуры.
Если материал претерпевает те или иные превращения, его сопротивление электрическому току меняется.
Расплавы некоторых диэлектриков - проводники, в частности, хорошо пропускает ток расплавленное стекло.
В диэлектрике, помещенном в переменное электромагнитное поле, часть энергии поля переходит в тепловую. Эта доля пропорциональна тангенсу угла диэлектрических потерь.
Все виды нагрева диэлектриков в электрических полях основаны именно на этом эффекте.
Диэлектрическая проницаемость диэлектриков зависит от многих факторов. По ее изменению можно контролировать ход различных процессов в диэлектриках.
Диэлектрические свойства вещества зависят от частоты. Один и тот же материал при воздействии на него поля низкой частоты – диэлектрик, поля высокой частоты – проводник.
Пробой диэлектриков носит либо тепловой, либо электрический лавинный характер. Механизм теплового пробоя – постепенный разогрев участка диэлектрика, падение его сопротивления и термическое разрушение материала.
6.4. Электромеханические эффекты в диэлектриках
Общим электромеханическим эффектом для всех диэлектриков является электрострикция. Она появляется в упругом (обратимом) превращении энергии тела в электрическое поле и для свободного тела сопровождается увеличением его размеров.
Пьезоэлектрический эффект (пьезоэффект) – это также электромеханический эффект, однако он наблюдается не во всех диэлектриках, а только в нецентросимметричных кристаллах. Причем, в отличии от электрострикции, пьезоэффект обратим. Он может быть прямым и обратным.
Прямой пьезоэффект проявляется в образовании зарядов на поверхности твердого тела под воздействием механических напряжений.
Лампу-вспышку зажигает удар. Польский изобретатель Тадеуш Косецкий предложил использовать пьезокристалл в качестве источника энергии для лампы-вспышки. Под действием быстрого сильного удара по кристаллу на нем возникает электрическое напряжение. По расчетам изобретателя, его вполне должно хватить для зажигания лампы. Никаких батарей для такого "блица" вообще не понадобится: всю необходимую для лампы энергию даст механический удар по кристаллу.
Электрострикция – деформация диэлектриков, пропорциональная квадрату напряженности электрического поля Е2.
Электрострикция обусловлена поляризацией диэлектриков в электрическом поле и есть у всех диэлектриков - твердых, жидких и газообразных.
Электрострикцию следует отличать от линейного по полю Е обратного пьезоэлектрика.
В изотропных средах, в том числе в газах и жидкостях, Электрострикция наблюдается как изменение плотности под действием электрического поля; относительная объемная деформация AV/V также пропорциональна квадрату напряженности электрического поля Е.
Если приложить переменное электрическое поле частоты ю к диэлектрику, то в результате электрострикции диэлектрик будет колебаться с частотой 2.
Применение: для преобразования электрических колебаний в звуковые [3].
Обратный пьезоэффект - аналогичен эффекту электрострикции однако, если при электрострикции деформации тела не зависит от знака электрического поля, для пьезоэффекта такая зависимость имеет место. Практически можно считать, что пьезоэффект отличен, а электрострикция является квадратичным эффектом.
В некоторых случаях используются одновременно и прямой и обратный пьезоэффект, например, в пьезоэлектрических трансформаторах.
Пьезоэффект – эффект, при котором в некоторых кристаллических веществах, то есть пьезоэлектриках (кварц, сегнетова соль, титанат бария и др.) при сжатии или растяжении в определенных направлениях возникает электрическая поляризация даже в отсутствии электрического поля (прямой пьезоэффект). Следствием прямого пьезоэффекта является обратный пьезоэффект – появление механических деформаций под действием электрического поля.
Пьезоэффекты наблюдаются только у кристаллов, не имеющих центра симметрии. Некоторые прироэлектрики способны создавать пьезоэффект, где он проявляется в частности, в изменении величины спонтанной поляризации при механической деформации. Пьезоэлектрические свойства возможно создавать в некоторых некристаллических диэлектриках (пьезокерамика, древесина и др.).
Применение: выше описанный эффект используется в пьезоэлектрических преобразователях (УЗ-технология, дефектоскопия, радиовещание, микрофоны, резонаторы и т.д.).
Рис. 6.2. Пьезоэлектрический преобразователь:
1,2 – электроды; 3 – пьезоэлемент; 4 – поверхности
Do'stlaringiz bilan baham: |