5.5. Проводник с током в магнитном поле
Когда по проводнику, помещенному в магнитное поле, идет электрический ток, электроны движутся относительно положительных ионов, составляющих кристаллическую решетку. Поэтому и в системе отсчета, связанной с решеткой (т.е. в системе отсчета, в которой проводник неподвижен, сила Лоренца действует только на электроны). Через взаимодействие электронов с ионами эта сила передается решетке.
Возможен и обратный эффект: колебания решетки передаются электронам, а их движение в магнитном поле приводит к возникновению тока.
Взаимодействие двух проводников, по которым текут электрические токи, осуществляется через магнитное поле. Каждый ток создает магнитное поле, которое действует на другой проводник. Таким образом, взаимодействуют отнюдь не поля между собой, а поле и ток.
Аналогичным образом взаимодействуют и движущиеся электрические заряды. Причем для магнитных взаимодействий третий закон Ньютона не выполняется (сила, действующая на один заряд со стороны другого, не равна силе действующей на второй заряд со стороны первого).
5.6. Электромагнитная индукция
При движении (изменении) магнитного поля в замкнутом проводнике возникает ЭДС индукции. В соответствии с правилом Ленца направление индукционного тока таково, что его собственное поле препятствует изменению магнитного потока, вызывающего индукцию. Внешние силы, двигающие магнит, встречают сопротивление со стороны проводящего контура. Собственное поле контура таково, что при приближении магнита рамка и магнит отталкиваются, а при удалении притягиваются. Во всех случаях внешние силы должны будут выполнять работу, которая превратится в конечном счете в работу тока.
Это явление наблюдается и в том случае, когда перемещения проводника не происходит, а магнитное поле меняется во времени. Если контур, проводящий ЭДС индукции вызывает в нем индукционный ток, если непроводящий (например, условно проведенный в воздухе), то возникает лишь ЭДС.
Рассмотрим два контура, расположенные рядом. Переменный ток, протекающий в одном из них, создает переменное магнитное поле, которое вызывает появление ЭДС индукции в другом контуре. Такое явление называется взаимной индукцией.
Переменный магнитный поток может вызываться переменным током самого контура. В этом случае в контуре также появляется ЭДС – она называется ЭДС самоиндукции.
Если в изменяющемся магнитном поле перпендикулярно к его силовым линиям поместить металлическую (не ферромагнитную) пластинку, в ней начнут протекать круговые индукционные токи.
Ток в пластинке может достигать больших величин, даже при небольшой напряженности поля, так как сопротивление массивного проводника мало. Индукционные токи в массивных проводниках называют токами Фуко или вихревыми точками.
Вихревые токи в пластинке создают магнитное поле. Это поле действует в соответствии с правилом Лоренца навстречу полю возбуждения. Это значит, что пластинка будет выталкиваться из поля.
Колеблющаяся между полюсами электромагнита тяжелая металлическая пластинка "увязает", если включить постоянный ток, питающий электромагнит, и останавливается. Вся ее энергия превращается в тепло, выделяемое токами Фуко. В неподвижной пластине токи, разумеется, отсутствуют. Тормоз, основной на этом эффекте не имеет трения покоя.
Чем лучше проводник пропускает ток, тем ближе по величине к первоначальному встречное магнитное поле. В идеальный проводник (сверхпроводник) электромагнитная волна вообще не проникает, вихревые токи текут в бесконечно малой по величине "кожице" металла.
Выталкивание магнитного поля из сверхпроводника называется эффектом Мейснера.
Этот эффект используется для создания магнитных экранов, позволяющих получить магнитный вакуум до 10-8 эрстед. Им объясняется интересное явление – парение постоянного магнита над чашей из сверхпроводящего материала.
В стационарном электростатическом или магнитном поле подвеска тела не может быть стабильной, если относительная диэлектрическая проницаемость или магнитная проницаемость тела больше или равна единице. Диэлектрическая проницаемость всех тел больше. Но магнитная проницаемость диамагнитных материалов и сверхпроводников меньше единицы. Это дает возможность осуществлять с этими веществами стабильную подвеску. Любое перемещение подвешенного тела приводит к появлению вихревых токов, энергии которых достаточно, чтобы удержать подвешенное тело.
Триумф индукционных токов – беличья клетка ротора асинхронного двигателя работают индукционные насосы для перекачивания жидких металлов в металлургии и ядерной энергетике.
На величину вихревого тока влияют удельная электрическая проводимость и магнитная проницаемость материала, толщина образца и частота тока.
При прохождении по проводнику тока высокой частоты наблюдается поверхностный эффект (скин-эффект) – ток идет только по поверхностному слою проводника. При частоте 10-7 Гц для хорошего неферромагнитного проводника толщина слоя приблизительно 0,01 см. На этом основан метод поверхностной закалки.
Существование скин-эффекта означает, что электромагнитная волна, попадающая на поверхность проводника (металла, электролита или плазмы) быстро затухает в глубине проводника, проникая лишь на глубину скин-слоя.
Do'stlaringiz bilan baham: |