Эффект Фарадея – один из эффектов магнитооптики. Заключается во вращении плоскости поляризации линейно поляризованного света, распространяющегося в веществе вдоль постоянного магнитного поля, в котором находится это вещество. Открыт М. Фарадеем в 1845 г.
Под действием магнитного поля показатели преломления (n+ и n-) для циркулярно право- и левополяризованного света становятся различными. Вследствие этого при прохождении через среду линейно поляризованного излучения его лево- и правополяризованные составляющие распространяются с различными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути.
В результате плоскость линейно поляризованного монохроматического света поворачивается на некоторый угол, зависящий от длины пути, длины волны и показателей преломления n+ и n-. Эффект Фарадея тесно связан с эффектом Зеемана и является следствием его [3].
Частным случаем эффекта Фарадея является магнитооптический эффект Керра – при отражении под любым углом, в том числе и по нормали к поверхности, линейнополяризованного света от намагниченного ферромагнетика возникает элептически поляризованный свет. Фактически, магнитооптический эффект Керра это вращение плоскости поляризации части излучения в тонком поверхностном слое ферромагнетика в магнитном поле.
Магнитооптическая установка для автоматической записи магнитных характеристик ферромагнетика, в которой использование магнитооптического эффекта Керра позволяет снимать кривые намагничивания и гистерезиса на участках поверхности размером 1 мк2.
При распространении света в веществе перпендикулярно магнитному полю возникает двойное лучепреломление, величина которого пропорциональна квадрату напряженности магнитного поля (эффект Коттона-Муттона).
Эффект Коттона-Мутона – двойное лучепреломление света в изотропном веществе, помещенном в магнитное поле (перпендикулярно световому лучу). Впервые обнаружено в коллоидных растворах англичанином Керром в 1901 г., исследовано французами Коттоном и Мутоном в 1907 г.
Суть эффекта состоит в том, что образец прозрачного вещества помещают между полюсами мощного электромагнита и пропускают через него луч монохроматического света, линейно поляризованного в плоскости, составляющей с направление магнитного поля угол в 45°. Проходящий через вещество луч света из линейно-поляризованного превращается в эллиптически поляризованный, так как он разделяется в веществе, ставшим анизотропным, на два луча - обыкновенный и необыкновенный, имеющие разные показатели преломления. Эти лучи распространяются под очень малым углом друг к другу. Поэтому для обнаружения эффекта необходимы достаточно сильные поля. Величина угла расхождения лучей пропорциональна квадрату напряженности магнитного поля и длине волны света [3].
Наложение сильного магнитного поля ориентирует хаотически расположенные молекулы (если последние имеют постоянный магнитный момент), что и приводит к оптической анизотропии. Этот эффект много слабее, чем электрооптических эффект Керра, а в технике применяется редко.
Механизм всех магнитооптических явлений тесно связан с механизмом прямого и обращенного эффекта Зеемана.
Прямой (обращенный) эффект Зеемана состоит в расщеплении спектральных линий испускаемого (поглощаемого) излучения под действием магнитного поля на излучающее (поглощающее)вещество. При этом неполяризованное излучение с частотой направления поля расщепляется на два компонента (линии) с частотами и, первая из которых поляризована по левому кругу, а вторая по правому. В направлении же перпендикулярном поля расщепление имеет такой характер: имеется при линейном-поляризованные компоненты с частотами.
Крайние компоненты поляризованы перпендикулярно магнитному полю, средние же с неизменной частотой поляризована вдоль поля и по интенсивности вдвое превосходит соседние. Величина смещения частоты пропорциональна индукции магнитного поля. Эффект Зеемана обусловлен расщеплением в магнитном поле энергетических уровней атомов или молекул на подуровни, между которыми возможны квантовые переходы.
Примеры применения:
- кольцевой лазер для определения скорости вращения имеет трубу и отражательные зеркала, которые создают замкнутый оптический контур, включающий ось лазера, а также средства с помощью которых световые лучи обособляются и накладываются, циркулируя в оптическом контуре в противоположных направлениях. Лазер отличается тем, что предусмотрено устройство служащее для воздействия на трубу лазера осевого магнитного поля таким образом, что в соответствие с эффектом Зеемана, создается два луча с противоположной круговой поляризацией. Предусмотрено устройство, которое обеспечивает поступательное движение только одного такого луча в каждом направлении вдоль оптического контура;
- аппарат предназначен для реализации способа определения концентрации парамагнитного материала в газовой смеси. Образец смеси подвергают воздействию магнитного поля средней напряженности и освещают лазерным излучением постоянной частоты. Магнитное поле энергетическими уровнями в парамагнитном материале до величины, соответствующей условию резонансас лазерным излучением. Для количественной корреляции вариации интенсивности лазерного излучения, проходящего через смесь, как функция напряженности магнитного поля используют стандартные процедуры детектирования. В случае окиси азота способ достаточно чувствителен, чтобы обнаруживать концентрации, значительно меньше, чем одна часть на миллион.
В заключении отметим, что механизм эффекта Фарадея, по сути дела, обусловлен обращенным эффектом Зеемана. Им же объясняется избирательное поглощение радиоволн парамагнитными телами, помещенными в магнитное поле.
Эффект Зеемана – расщепление уровней энергии и спектральных линий атома и других атомных систем в магнитном поле. Открыт в 1896 г. голландским физиком П. Зееманом при исследовании свечения паров натрия в магнитном поле. Под действием магнитного поля уровни энергии расщепляются на зеемановские подуровни; при переходе между подуровнями уровней ei и Ек вместо одной спектральной линии появляется несколько поляризованных компонент.
Может наблюдаться простой (нормальный) зеемановский эффект для одиночной спектральной линии. Величина расщепления пропорциональна напряженности магнитного поля Н.
Рис. 15.3. Простой эффект Зеемана:
а) - без поля (vq - частота, соответствующая исследуемой спектралиной линии); б) – при наличии магнитного поля
Примечание: созданы устройства для прецизионного измерения любых магнитных полей (квантовые магнетометры) [3].
15.5. Фотодихроизм
Существует ряд явлений, при которых оптическая анизотропия в среде вызывается воздействием из нее энергии светового излучения. К ним относится эффект фотодихроизма, а также поляризация люминесценции.
Дихроизм – это зависимость величины поглощения телами света от его поляризации. Это свойство, в той или иной мере присуще всем поглощающим свет веществам, обладающим анизотропной структурой. Классический пример такого вещества – кристалл турмалина. Он обладает двойным лучепреломлением и, кроме того, очень сильно поглощает обыкновенный луч. Поэтому даже из тонкой пластины турмалина естественный свет выходит линейно-поляризованным. Дихроизм обнаруживает не только кристаллы но и многочисленные некристаллические тела, обладающие естественной или искусственно созданной анизотропией (молекулярные кристаллы, растянутые полимерные пленки, жидкости, ориентированные в потоке и т.д.).
Эффект фотодихроизма состоит в возникновении дихроизма в изотропной среде под действием на эту среду поляризованного света. Свет вызывает фотохимические превращения молекул вещества, изменяя коэффициент их поглощения. Поляризованный свет преимущественно взаимодействует с молекулами определенной ориентации, что и приводит к появлению анизотропии поглощения.
Естественная оптическая активность. Кроме сред с линейным дихроизмом (т.е. с различным поглощением света, обладающего различной линейной поляризацией) существуют среды, обладающие циркулярным дихроизмом, по разному поглощающие правоциркулярно- и левоциркулярно-поляризованный свет. Циркулярным дихроизмом, как правило, обладают вещества с естественной оптической активностью. Естественной оптической активностью называют способность вещества поворачивать плоскость поляризации прошедшего через него света. Величина угла поворота зависит от длины волны света, т.е. имеет место вращательная дисперсия. Кроме того, этот угол пропорционален толщине слоя вещества, а для растворов и концентрации.
Явление естественной оптической активности используется при определении концентраций различных растворов сахараметрии.
Естественная оптическая активность объясняется явлением двойного цирулирного лучепреломления, т.е. расщеплением света на две циркулярно-поляризованные компоненты – левую и правую (следует отметить, что эффект Фарадея объясняется возникновением циркулярного преломления в магнитном поле). Направление вращения плоскости поляризации при естественной оптич. (левостороннее или правостороннее) зависят от природы вещества. Это связано с существованием веществ в двух зеркальных формах-левой и правой (свойство ассиметрии).
15.6. Поляризация при рассеивании света
Рассеянный на неоднородных средах естественный свет в некоторых направлениях является линейно-поляризованным и, наоборот, линейно-поляризованный свет в некоторых направлениях не рассеивается). В основе этого явления (как и при поляризации света, отраженного под углом Брюстера) лежит природа самой электромагнитной поперечной световой волны, а вовсе не анизотропия и ориентация молекул, что лишь препятствует полной поляризации рассеивания света.
Поляризация при рассеивании – единственный метод поляризации рентгеновского излучения.
Do'stlaringiz bilan baham: |