Курсовая работа «Подтверждаю»



Download 95,5 Kb.
bet4/5
Sana01.06.2022
Hajmi95,5 Kb.
#623997
TuriКурсовая
1   2   3   4   5
Bog'liq
Мандина.77777

Химические свойства

Ковалентный радиус

116 пм

Радиус иона

(+3e) 63 (+2e) 72 пм

Электроотрицательность
(по Полингу)

1,88

Электродный потенциал

0

Степени окисления

3, 2, 0, -1

Термодинамические свойства простого вещества

Плотность

8,9 г/см³

Молярная теплоёмкость

24,8[1] Дж/(K·моль)

Теплопроводность

100 Вт/(м·K)

Температура плавления

1 768 K

Теплота плавления

15,48 кДж/моль

Температура кипения

3143 K

Теплота испарения

389,1 кДж/моль

Молярный объём

6,7 см³/моль

Кристаллическая решётка простого вещества

Структура решётки

гексагональная

Параметры решётки

a=2,505 c=4,089 Å

Отношение c/a

1,632

Температура Дебая

385 K

Co

27







58,9332







[Ar]3d74s2
















Кобальт — элемнт побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 27. Обозначается символом Co (лат. Cobaltum). Простое вещество кобальт (CAS-номер: 7440-48-4) — серебристо-белый, слегка желтоватый металл с розоватым или синеватым отливом. Существует в двух кристаллических модификациях: α-Co с гексагональной плотноупакованной решёткой, β-Co с кубической гранецентрированной решёткой, температура перехода α↔β 427 °C.

Схема атома кобальта


Название химического элемента кобальт происходит от нем. Kobold — домовой, гном. При обжиге содержащих мышьяк кобальтовых минералов выделяется летучий ядовитый оксид мышьяка. Руда, содержащая эти минералы, получила у горняков имя горного духа Кобольда. Древние норвежцы приписывали отравления плавильщиков при переплавке серебра проделкам этого злого духа. Вероятно, имя злого духа восходит к греческому «кобалос» — дым. Этим же словом греки называли лживых людей. В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала неизвестный ранее металл, который и назвал кобальтом. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет — этим свойством пользовались ещё в древних Ассирии и Вавилоне.
Нахождение в природе
Массовая доля кобальта в земной коре 4·10−3%. Кобальт входит в состав минералов: каролит CuCo2S4, линнеит Co3S4, кобальтин CoAsS, сферокобальтит CoCO3, смальтит CoAs2 и других. Всего известно около 30 кобальтосодержащих минералов. Кобальту сопутствуют железо, никель, марганец и медь. Содержание в морской воде приблизительно (1,7)·10−10%. Кобальт получают в основном из никелевых руд, обрабатывая их растворами серной кислоты или аммиака. Также используется методы пирометаллургии. Для отделения от близкого по свойствам никеля используется хлор, хлорат кобальта (Co(ClO3)2) выпадает в осадок, а соединения никеля остаются в растворе. Кобальт имеет только один стабильный изотоп — 59Co (изотопная распространённость 100[2] %). Известны еще 22 радиоактивных изотопа кобальта.
Физические свойства Кобальт — твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решетка кубическая гранецентрированная). Кобальт — ферромагнетик, точка Кюри 1121 °C.
Желтоватый оттенок ему придает тонкий слой оксидов.
Химические свойства
Оксиды

  • На воздухе кобальт окисляется при температуре выше 300 °C.

  • Устойчивый при комнатной температуре оксид кобальта состоит из смеси оксидов CoO и Co2O3, поэтому в справочниках можно встретить брутто формулу Co3O4.

  • При высоких температурах можно получить α-форму или β-форму оксида CoO

  • Все оксиды кобальта восстанавливаются водородом. Со3О4 + 4Н2 → 3Со + 4Н2О.

  • Оксид кобальта (II) можно получить, прокаливая соединения кобальта (II), например: 2Со(ОН)2 + O2 → Co2O3 + Н2O.

Другие соединения

  • При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором. Co + 3F → CoF3, но, Co + 2Cl → CoCl2

  • С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и черную β-форму (выпадает в осадок из растворов).

  • При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со9S8

  • С другими окисляющими элементами, такими как углерод, фосфор, азот, селен, кремний, бор. кобальт тоже образует сложные соединения, являющиеся смесями где присутствует кобальт со степенями окисления 1, 2, 3.

  • Кобальт способен растворять водород, не образуя химических соединений. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН2 и СоН.

  • Растворы солей кобальта CoSO4, CoCl2, Со(NO3)2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.

Кобальт создаёт комплексные соединения. Чаще всего на основе аммиака.
Наиболее устойчивыми комплексами являются лутеосоли [Co(NH3)6]3+ желтого цвета и розеосоли [Co(NH3)5H2O]3+ красного или розового цвета.
Также кобальт создаёт комплексы на основе CN, NO2 и многих других.
Хлорид кобальта
Ионные комплексы кобальта Легирование кобальтом стали повышает её жаропрочность, улучшает механические свойства. Из сплавов с применением кобальта создают обрабатывающий инструмент: свёрла, резцы, и.т.п. Магнитные свойства сплавов кобальта находят применение в аппаратуре магнитной записи, а также сердечниках электромоторов и трансформаторов. Для изготовления постоянных магнитов иногда применяется сплав, содержащий около 50 % кобальта, а также ванадий или хром. Кобальт применяется как катализатор химических реакций. Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов. Силицид кобальта отличный термоэлектрогенераторы с высоким КПД.Радиоактивный кобальт-60 (период полураспада 5,271 года) применяется в гамма-дефектоскопии и медицине.60Со используется в качестве топлива в радиоизотопных источниках энергии.


(металлургия). — Кобальтовые руды встречаются в природе чаще всего в виде шпейсового К., CoAs2, или кобальтового блеска, CoAsS (см. Кобальтиаковые соединения). Анализ этих руд, приблизительно, следующий:
------------------------------------------------------------------------------------------
| веществ нерастворимых в воде | 8% |
|-----------------------------------------------------------------------------------------|
| летучих веществ (воды и кислорода в | 32,75%  |
| избытке) |  |
|-----------------------------------------------------------------------------------------|
| глинозема | 5% |
|-----------------------------------------------------------------------------------------|
| извести  | 1% |
|-----------------------------------------------------------------------------------------|
| магнезии  | 1% |
|-----------------------------------------------------------------------------------------|
| закиси железа  | 30% |
|-----------------------------------------------------------------------------------------|
| окиси марганца | 18% |
|-----------------------------------------------------------------------------------------|
| окиси кобальта | 3% |
|-----------------------------------------------------------------------------------------|
| окиси никеля  | 1% |
------------------------------------------------------------------------------------------
Для получения металлического К. руда обрабатывается сухим, смешанным, мокрым или электролитическим способом.
I. Сухой способ. В 1886 г. Levat взял патент на обработку руды углем, так, чтобы восстановлять никель и К. и получить их в виде зерен или металлической пыли. После этой операции отделение К. и никеля от окислов железа и марганца совершается электролитическим путем. Этот способ не нашел себе применения, вследствие значительного содержания железа и марганца, которые препятствуют полной обработке руды. Электролитический способ пока тоже не употребляется.
II. Смешанный способ (Herrenschmidt'a) состоит в обогащении сперва руды К. и в обработке реактивами мокрым путем. Для этого руду сперва смешивают со свинцовой серебристой рудой или с медной (с медным песчаником). Смесь закладывается в доменную печь, где марганец переходит в шлак, а полученный продукт заключает сернистые соединения К., никеля, меди, свинца, а также и железа. Потом продукт мелется и превращается обжигом в сернокислые соли. Сернокислые никель, К. и медь выщелачивают водой и с помощью железа осаждают медь. Жидкость фильтруют через слой руды, вследствие чего железо осаждается и замещается в растворе соответственным количеством К., никеля и марганца из руды. Берут часть раствора и магнезией осаждают эти металлы; осадок отделяют и обрабатывают кипячением с остальным количеством раствора, заключающего в себе К., никель и марганец. При этом марганец растворяется, осаждая соответственное количество окиси К. и никеля. Повторяют операцию несколько раз пока окончательно не получат в осадке только никель и К., которые отделяют по способу, указанному ниже. В 1891 г. Герреншмидт предложил сернистые соединения, в полученном из домны продукте, переводить в хлористые посредством хлористого кальция. Затем часть профильтрованного раствора обрабатывать смесью окиси и углекислой меди и извести, причем осаждается — железо с некоторым количеством меди в виде углекислого соединения. Подвергают кипячению: медь вторично растворяется. Известью или углекислым натром осадить из жидкости никель, К. и медь и к этому осадку прибавить остальную часть жидкости, заключающую хлористый К., никель и медь, вследствие чего медь осаждается, а К. и никель переходят в раствор.
III. Мокрый способ. Кобальтовые руды, а в особенности руды из Новой Каледонии, могут быть обрабатываемы прямо мокрыми способами, из которых более употребителен способ Герреншмидта. Измельченную руду или кипятят с раствором сернокислой закиси железа или же прокаливают смесь этой соли с измельченной рудой. Металлы: К., никель и марганец переходят в сернокислые соединения:
2SO4Fe + MnO2 + CoO = Fe2O4 + SO4Mn + SO4Co
и 2SO4Fe + Co2O3 = Fe2O3 + 2SO4Co.
Сцеживают и фильтруют железистую муть, содержащую глинозем и другие породы. Фильтрат, содержащий соединения К., никеля и марганца, обрабатывают сернистым железом; полученные в осадке сернистые соединения К. и никеля, а также и некоторого количества марганца отделяют фильтрацией на фильтр-прессе и подвергают отстаиванию с некоторым количеством хлористого железа. Сернистый марганец растворяется и в растворе получается черный осадок сернистого К. и никеля и жидкость с сернокислыми и хлористыми солями марганца и железа. Осадок фильтруют, просушивают и обжигают для превращения в растворимые сернокислые соединения. Обожженную массу разбавляют снова кипяченой водой для растворения сернокислого К. и никеля. Эту жидкость обрабатывают хлористым кальцием для превращения в хлористые соединения. Потом жидкость разделяют на 2 части: в первой части К. и никель осаждают известковым молоком, пропускают через фильтр-пресс и промывают для выделения хлористого кальция. Осадок в виде мути окисляют струей хлора вместе с воздухом. Затем к окисленной мути добавляют вторую часть жидкости. При подогреве в присутствии пара никель осадка переходит в виде хлористого соединения в раствор и вместе с тем осаждает соответственное количество окиси К. Повторяют эту операцию до тех пор, пока не получат осадка с содержанием одной чистой окиси К.
Металлический К. промышленным образом получается восстановлением окиси К. углем, реже углеводородами или окисью углерода. Для этого приготовляется масса из 95 частей CoO, 4 частей древесного угля, 2 частей патоки и достаточного количества воды. Эта масса перемешивается на месильной машине, спрессовывается в металлических формах и после ее предварительной просушки разрезается на кубики и вторично просушивается. Затем кубики обсыпаются угольным порошком и накаливаются до 1220° в восстановительном пламени, причем металлы восстанавливаются и обуглероживаются. Наконец, металл сплавляется в тиглях в присутствии буры и окиси К. при 1800-2000° для обезуглероживания кобальта. В белокалильном жару кобальт сваривается со сталью; железо, покрытое с обеих сторон К., выкатывается, в самые тонкие листы. Употребление металлического К. очень ограничено. Он идет на приготовление феррокобальта для получения кобальтовой стали и для разных сплавов с медью. Употребляется также для кобальтирования металлов. Главным же образом пользуются кобальтовыми красками (см. Кобальт, химический элемент). кобальта — разновидности химического элемента кобальта с разным количеством нейтронов в ядре. Известны изотопы кобальта с массовыми числами от 47 до 75 (количество протонов 27, нейтронов от 20 до 48) и 11 ядерных изомеров.
Природный кобальт является моноизотопным элементом с единственным стабильным изотопом 59Co.
Наиболее долгоживущий из нестабильных изотопов кобальта и имеющий 5,2714 лет. Другие наиболее долгоживущие изотопы 57Co с периодом полураспада 271,8 суток, 56Co (77,27 суток), 58Co (70,86 суток). Прочие изотопы имеют период полураспада менее суток.
У изотопов с массовыми числами менее 59 превалируют позитронный распад и электронный захват, при этом дочерними ядрами являются изотопы железа. У изотопов с массовыми числами более 59 превалирует бета-распад, порождая изотопы никеля.
Кобальт в чистом виде известен человеку с 18 века, но применялся он уже с незапамятных времен: в древней Ассирии и Вавилоне с помощью его соединений окрашивались стёкла в красивый синий цвет, не потеряло это применение своего значения и сегодня. В чистом виде кобальт – красивый металл серебристо-белого цвета, который имеет то желтоватый, то синевато – розовый отлив.
Цвет кобальт
Основное применение кобальта в промышленности это легирование сталей: его присутствие повышает их стойкость и жаропрочность. Он незаменим в производстве магнитов, сердечники трансформаторов и электрических моторов изготовляются с применением кобальтовых сплавов. Соединение кобальта с литием в настоящее время широко используется для производства литиевых аккумуляторов, которые могут применяться как источник постоянного тока для электротранспорта. Его тетракарбонил применяют как катализатор, а органический стеарат этого металла применяют для производства пластиков.
Кроме стабильного изотопа, существует и радиоактивный кобальт, (Со-60), который используется в медицине в современных устройствах для нейрохирургических операций и облучения труднодоступных опухолей головного мозга, ведь по мощности излучения всего 17 г этого изотопа эквивалентны килограмму радия.


Download 95,5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish