Использование производной для решения



Download 114,5 Kb.
Sana06.05.2023
Hajmi114,5 Kb.
#935881
TuriРешение
Bog'liq
Использование производной для решения уравнений и неравенств (1)


Использование производной для решения
уравнений и неравенств
Бирагова Л.Л.МБОУ лицей г.Владикавказ
При решении уравнения или неравенства часто бывает полезно доказать возрастание (убывание) на некотором промежутке функций, в него входящих. При этом часто пользуются производными.
Пример 1.
Решим уравнение
. (1)
Решение.
Рассмотрим функцию . Область существования этой функции есть промежуток . Функция f(x) имеет внутри промежутка Х положительную производную .
Следовательно, функция f(x) возрастает на промежутке Х, и так как она непрерывна на этом промежутке, то каждое свое значение она принимает ровно в одной точке. А это означает, что уравнение (1) имеет не более одного корня. Легко видеть, что число удовлетворяет уравнению (1). Следовательно, уравнение (1) имеет единственный корень .
Ответ: -1.


Пример 2.
Решим неравенство
(2)
Решение.
Рассмотрим функцию f(x)= . Поскольку эта функция на интервале X= имеет производную , которая положительна на этом интервале, то функция f(x) возрастает на интервале Х. Так как функция f непрерывна на интервале Х, то каждое свое значение она принимает ровно в одной точке. Следовательно, уравнение f(x)=0 может иметь не более одного корня. Легко видеть, что число является корнем уравнения f(x)=0. Поскольку функция f(x) непрерывна и возрастает на интервале Х, то f(x)<0 при x<0 и f(x)>0 при x>0. Поэтому решениями неравенства (2) являются все х из промежутка .
Ответ: .


Пример 3.
Выяснить, сколько действительных корней имеет уравнение:
. (1)


Решение.
Рассмотрим функцию . Она на интервале имеет производную .
Производная обращается в нуль точках: и . Так как для любого х из интервалов и , то на каждом из промежутков и функция возрастает. Так как для любого х из промежутка , то на промежутке функция убывает.
Так как , , , и функция непрерывна на каждом из интервалов , и , то на каждом из них есть единственная точка, в которой эта функция обращается в нуль. Следовательно, функция имеет три нуля, т.е. уравнение (1) имеет три действительных корня.
Ответ: три действительных корня.
Пример 4.
Решить уравнение:
(1)
Решение.

Обе части уравнения (1) определены на отрезке . Рассмотрим функцию


.
Эта функция на интервале имеет производную
,
которая обращается в ноль в единственной точке .Так как функция непрерывна на отрезке , то она достигает на этом отрезке наибольшего и наименьшего значений. Они находятся среди чисел , , .
Так как , то наибольшее значение 2 на отрезке функция достигает в единственной точке . Следовательно, уравнение (1) имеет единственный корень .
Ответ: 3.
Download 114,5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish