KIRISH
Kompyuterning qoʻllanilish sohalaridan biri mexanika, texnika, telemommunikatsiyaning koʻpgina ob’ektlarida yuz beradigan baʼzi jarayonlarning matematik modellarini hisoblash usullari va kompyuterlarning dasturiy vositalari yordamida tahlil qilish dolzarb muammo boʻlib qolmoqda. Hisoblash usullari va kompyuterlarning zamonaviy imkoniyatlari birgalikda tadqiqot jarayonlari va obyektlarining shu paytgacha nomaʼlum xususiyatlarini ochishga va, shu asnoda, texnologik jarayonlarni takomillashtirishga xizmat qilmoqda. Matematika turmush masalalarini yechishga bo’lgan ehtiyoj (yuzlar va hajmlarni o’lchash, kema harakatinn boshqarish, yulduzlar harakatini kuzatish va boshqalar) tufayli vujudga kelganligi uchun ham u sonli matematika, ya’ni hisoblash matematikasi bo’lib, unnig maqsadi esa masala yechimini son shaklida topishdan iborat edi. Bu fikrga ishonch hosil qilish uchun matematika tarixiga nazar tashlash kifoyadir. Vavilon olimlarining asosiy faoliyati matematik jadvallar tuzishdan iborat bo’lgan. Shu jadvallardan bizgacha yetib kelgaplaridan biri miloddan 2000 yil avval tuzilgan bo’lib, unda 1 dan 60 gacha bo’lgan sonlarning kvadratlari keltirilgan. Miloddan avvalgi 747-yilda tuzilgan boshqa bir jadvalda Oy va Quyoshning tutnlish vaqtlari keltirilgan. Matematikada tipik matematik masalalarning yechimlarini yetarlicha aniqlikda hisoblashimkonini beruvchn metodlar yaratishga va shu maqsadda xozirgi zamon hisoblash vositalaridan foydalanish yo’llarini ishlab chiqishga bag’ishlangan soha hisoblash matematikasi deyiladi. Hozirgi zamon hisoblash matsmatikasi jadal rivojlanib bormoqda. Hisoblash matematikasi qamragan masalalar turi juda ko’p. Tabiiyki, bu masalalarni yechish metodlari ham xilma-xildir, shunga qaramay bu metodlarning umumiy g’oyasi haqida so’z yuritish mumkin. Buning uchun avval funksional analizga tegishli bo’lgan ayrim tushunchalarni keltiramiz.
Agar biror to’plamda u yoki bu yo’l bilan limit tushunchasi kiritilgan bo’lsa, u holda bu to’plam abstrakt fazo deyiladi. Ba’zan masalani aniq yechish ham mumkin, lekin klassik matematika metodlari bilan kerakli sonli qiymat olish uchun juda ko’p hisoblashlar talab qilinadi. Shuning uchun ham hisoblash matematikasi zimmasiga konkret masalalarni yechish uchun oqilona va tejamkor metodlar ishlab chiqish yuklanadi (masalan, chiziqli algebraik tenglamalar sistemasini yechishda Kramer formulalariga nisbatan Gauss metodi ancha tejamkor metoddir) Demak, hisoblash matematikasi oldidagi asosiy masala funksional fazolarda to’plamlarni va ularda aniqlangan operatorlar (funksionallar) ni yaqinlashtirish hamda hozirgi zamon hisoblash mashinalari qo’llaniladigan sharoitda masalalarni yechish uchun oqilona va tejamkor algoritm va metodlar ishlab chiqishdan iboratdir.
Do'stlaringiz bilan baham: |