Investments, tenth edition


The Reward-to-Volatility (Sharpe) Ratio



Download 14,37 Mb.
Pdf ko'rish
bet250/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   246   247   248   249   250   251   252   253   ...   1152
Bog'liq
investment????

  The Reward-to-Volatility (Sharpe) Ratio 

 Finally, it is worth noting that investors presumably are interested in the expected 

 excess  return they can earn by replacing T-bills with a risky portfolio, as well as the 

risk they would thereby incur. While the T-bill rate is not constant over the entire 

period, we still know with certainty what nominal rate we will earn if we purchase a 

bill and hold it to maturity. Other investments typically entail accepting some risk in 

return for the prospect of earning more than the safe T-bill rate. Investors price risky 

assets so that the risk premium will be commensurate with the risk of that expected 

 excess  return, and hence it’s best to measure risk by the standard deviation of excess, 

not total, returns. 

 The importance of the trade-off between reward (the risk premium) and risk (as mea-

sured by standard deviation or SD) suggests that we measure the attraction of a portfolio 

by the ratio of risk premium to SD of excess returns.   

 Sharpe 


ratio 5

Risk premium

SD of excess return

 

 (5.18)   



 This reward-to-volatility measure (first proposed by William Sharpe and hence called the 

 Sharpe ratio ) is widely used to evaluate the performance of investment managers. 

 Notice that the Sharpe ratio divides the risk premium (which rises in direct proportion 

to time) by the standard deviation (which rises in direct proportion to square root of unit of 

time). Therefore, the Sharpe ratio will be higher when annualized from higher frequency 

returns. For example, to annualize the Sharpe ratio (SR) from monthly rates, we multiply 

the numerator by 12 and the denominator by    

"12.  Hence the annualized Sharpe ratio is 



SR

A

 5 SR



M

    


"12 . In general, the Sharpe ratio of a long-term investment over  T  years will 

increase by a factor of    

"T  when  T -period  rates  replace  annual  rates.      

  

10



 When returns are uncorrelated, we do not have to worry about covariances among them. Therefore, the variance 

of the sum of 12 monthly returns (i.e., the variance of the annual return) is the sum of the 12 monthly variances. 

If returns are correlated across months, annualizing is more involved and requires adjusting for the structure of 

serial correlation. 

bod61671_ch05_117-167.indd   134

bod61671_ch05_117-167.indd   134

6/18/13   8:03 PM

6/18/13   8:03 PM

Final PDF to printer



  C H A P T E R  

5

  Risk, Return, and the Historical Record 



135

    5.6 


The Normal Distribution 

  The  bell-shaped     normal  distribution    appears naturally in many applications. For exam-

ple, heights and weights of newborns are well described by the normal distribution. In fact, 

many variables that are the end result of multiple random influences will exhibit a normal 

distribution, for example, the error of a machine that aims to fill containers with exactly 

1 gallon of liquid. By the same logic, if return expectations implicit in asset prices are 

rational, actual rates of return should be normally distributed around these expectations. 

 To see why the normal curve is “normal,” consider a newspaper stand that turns a profit 

of $100 on a good day and breaks even on a bad day, with equal probabilities of .5. Thus, 

the mean daily profit is $50 dollars. We can build a tree that compiles all the possible 

outcomes at the end of any period. Here is an    event  tree    showing outcomes after 2 days:  

  

 



Two good days, profit 

= $200


Two bad days, profit 

= 0


One good and one bad day, profit 

= $100


 Notice that 2 days can produce three different outcomes and, in general,  n  days can 

produce  n     1  1 possible outcomes. The most likely 2-day outcome is “one good and 

 Take another look at  Spreadsheet 5.1 . The scenario analysis for the proposed investment 

in the stock-index fund resulted in a risk premium of 5.76%, and standard deviation 

of excess returns of 19.49%. This implies a Sharpe ratio of .30, a value in line with the 

historical performance of stock-index funds. We will see that while the Sharpe ratio is 

an adequate measure of the risk–return trade-off for diversified portfolios (the subject of 

this chapter), it is inadequate when applied to individual assets such as shares of stock. 




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   246   247   248   249   250   251   252   253   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish