Investments, tenth edition


Mean and Standard Deviation Estimates



Download 14,37 Mb.
Pdf ko'rish
bet249/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   245   246   247   248   249   250   251   252   ...   1152
Bog'liq
investment????

  Mean and Standard Deviation Estimates 

from Higher-Frequency Observations 

 Do more frequent observations lead to more accurate estimates? The answer to this ques-

tion is surprising: Observation frequency has no impact on the accuracy of mean estimates. 

It is the  duration  of a sample time series (as opposed to the  number  of observations) that 

improves accuracy. 

 The total 10-year return divided by 10 is as accurate an estimate of the expected annual 

return as 12 times the average of 120 monthly returns. The average monthly return must 

be consistent with the average 10-year return, so the extra intra-year observations yield 

no additional information about average return. However, a longer sample, for example, a 

100-year return, will provide a more accurate estimate of the mean return than a 10-year 

return,  provided  the probability distribution of returns remains unchanged over the 100 years. 

bod61671_ch05_117-167.indd   133

bod61671_ch05_117-167.indd   133

6/18/13   8:03 PM

6/18/13   8:03 PM

Final PDF to printer




134 

P A R T   I I

  Portfolio Theory and Practice

This suggests a rule: Use the longest sample that you still believe comes from the same 

return distribution. Unfortunately, in practice, old data may be less informative. Are return 

data from the 19th century relevant to estimating expected returns in the 21st century? 

Quite possibly not, implying that we face severe limits to the accuracy of our estimates of 

mean returns. 

 In contrast to the mean, the accuracy of estimates of the standard deviation and 

higher moments (all computed using  deviations from the average ) can be made more 

precise by increasing the number of observations. Thus, we can improve accuracy 

of estimates of SD and higher moments of the distribution by using more frequent 

observations. 

 Estimates of standard deviation begin with the variance. When monthly returns are 

uncorrelated from one month to another, monthly variances simply add up. Thus, when the 

variance is the same every month, we annualize by:  

10

      s


A

2

5 12s



M

2

.  In general, the  T -month 



variance is  T  times the 1-month variance. Consequently, standard deviation grows at the 

rate  of     

"T,  that is:    s

A

5

"12s



M

.  While the mean and variance grow in direct proportion 

to time, SD grows at the rate of square root of time.   


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   245   246   247   248   249   250   251   252   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish