Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet248/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   244   245   246   247   248   249   250   251   ...   1152
Bog'liq
investment????

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A

B

C

D

E

F

Period


Implicitly Assumed

Probability = 1/5

Squared

Deviation

Gross HPR =

1 + HPR


Wealth

Index*


2001

.2

−0.1189



0.0196

0.0586


0.0707

0.0077


0.1774

0.0008


0.1983

0.8811


0.8811

0.6864


0.8833

0.9794


1.0275

Check:


1.0054^5=

0.7790


1.2869

1.1088


1.0491

0.0054


1.0275

−0.2210


0.2869

0.1088


0.0491

0.0210


0.0210

HPR (decimal)

.2

.2

.2



.2

2002


2003

2004


2005

Arithmetic average

Expected HPR

SUMPRODUCT(B5:B9, C5:C9) =

SUMPRODUCT(B5:B9, D5:D9)^.5 =

STDEV(C5:C9) =

Geometric average return

*The value of $1 invested at the beginning of the sample period (1/1/2001).

GEOMEAN(E5:E9) 

− 1 =


Standard deviation

AVERAGE(C5:C9) =



 Spreadsheet 5.2

Time series of HPR for the S&P 500  



e

X

c e l

Please visit us at 



www.mhhe.com/bkm

bod61671_ch05_117-167.indd   131

bod61671_ch05_117-167.indd   131

6/18/13   8:03 PM

6/18/13   8:03 PM

Final PDF to printer




132 

P A R T   I I

  Portfolio Theory and Practice

 The larger the swings in rates of return, the greater the discrepancy between the arith-

metic and geometric averages, that is, between the compound rate earned over the sample 

period and the average of the annual returns. If returns come from a normal distribution, 

the expected difference is exactly half the variance of the distribution, that is,   

 

E

3Geometric average4 5 E3Arithmetic average4 2 ½s

2

 



 (5.15)   

 (A warning: To use Equation 5.15, you must express returns as decimals, not percentages.) 

When returns are approximately normal, Equation 5.15 will be a good approximation.  

9

     



 

 

  Variance and Standard Deviation 

 

When thinking about risk, we are interested in the likelihood of deviations from the 



 expected  return. In practice, we usually cannot directly observe expectations, so we esti-

mate the variance by averaging squared deviations from our  estimate  of the expected 

 The geometric average in Example 5.6 (.54%) is substantially less than the arithmetic 

average (2.10%). This discrepancy sometimes is a source of confusion. It arises from the 

asymmetric effect of positive and negative rates of returns on the terminal value of the 

portfolio. 

 Observe the returns in years 2002 ( 2 .2210) and 2003 (.2869). The arithmetic aver-

age return over the 2 years is ( 2 .2210   1   .2869)/2   5   .03295  (3.295%). However, if 

you had invested $100 at the beginning of 2002, you would have only $77.90 at the 

end of the year. In order to simply break even, you would then have needed to earn 

$21.10 in 2003, which would amount to a whopping return of 27.09% (21.10/77.90). 

Why is such a high rate necessary to break even, rather than the 22.10% you lost in 

2002? The value of your investment in 2003 was much smaller than $100; the lower 

base means that it takes a greater subsequent percentage gain to just break even. 

Even a rate as high as the 28.69% realized in 2003 yields a portfolio value in 2003 of 

$77.90  3  1.2869  5  $100.25, barely greater than $100. This implies a 2-year annually 

compounded rate (the geometric average) of only .12%, significantly less than the arith-

metic average of 3.295%. 



 Example  5.7 

Geometric versus Arithmetic Average 

 You invest $1 million at the beginning of 2018 in an S&P 500 stock-index fund. Given the rate of return for 

2018,  2 40%, what rate of return in 2019 will be necessary for your portfolio to recover to its original value? 

 CONCEPT CHECK 

5.4 

  

9



 We are told to measure historical performance over a particular sample period by the  geometric  average but to 

estimate expected future performance from that same sample as the  arithmetic  average. The question naturally 

arises: If the same sample were to recur in the future, performance would be measured by the  geometric   aver-

age, so isn’t that the best estimator of expected return? Surprisingly, the answer is no. Future results will always 

contain both positive and negative surprises compared to prior expectations. When compounded, a run of positive 

surprises has greater impact on final wealth than a run of equal-sized negative ones. Because of this asymmetry, 

the sample geometric average is actually a downward-biased estimate of the future average return drawn from 

the same distribution. The bias turns out to be half the variance, and thus using the arithmetic average corrects 

for this bias. 

bod61671_ch05_117-167.indd   132

bod61671_ch05_117-167.indd   132

6/18/13   8:03 PM

6/18/13   8:03 PM

Final PDF to printer




  C H A P T E R  

5

  Risk, Return, and the Historical Record 



133

return, the arithmetic average,    r . Adapting Equation 5.12 for historic data, we again use 

equal probabilities for each observation, and use the sample average in place of the unob-

servable  E ( r ).   

 Variance 5 Expected value of squared deviations

 s

2



5 a p(s)3r(s) 2 E(r)4

2

  



 Using historical data with  n  observations, we could  estimate   variance  as   

 

s



^

2

5



1

a

n

s51

3r(s) 2 4

2

 

 (5.16)   



 where     s

^   replaces  s  to denote that it is an estimate.  

 Take another look at  Spreadsheet  5.2 . Column D shows the square deviations from 

the arithmetic average, and cell D12 gives the standard deviation as .1774, which is 

the square root of the sum of products of the (equal) probabilities times the squared 

deviations. 



 Example  5.8 

Variance and Standard Deviation 

 The variance estimate from Equation 5.16 is biased downward, however. The reason 

is that we have taken deviations from the sample arithmetic average,    r , instead of the 

unknown, true expected value,  E ( r ), and so have introduced an estimation error. Its effect 

on the estimated variance is sometimes called a  degrees of freedom  bias. We can elimi-

nate the bias by multiplying the arithmetic average of squared deviations by the factor 

 n /( n   2  1). The variance and standard deviation then become   

 s

^

2



5

a

n



2 1

b 3


1

a

n

s51

3r(s) 2 r4

2

5

1



2 1 a

n

s51

3r(s) 2 4

2

 s

^ 5



Å

1

2 1 a



n

s51

3r(s) 2 r4

2

 

 



(5.17)

   


 Cell D13 shows the unbiased estimate of standard deviation, .1983, which is higher than 

the .1774 value obtained in cell D12. For large samples,  n /( n   2  1) is close to 1, and the 

adjustment for degrees of freedom becomes trivially small.  


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   244   245   246   247   248   249   250   251   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish