Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet1042/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   1038   1039   1040   1041   1042   1043   1044   1045   ...   1152
Bog'liq
investment????

 Figure 24.7 

Rate of return of a perfect market timer as 

a function of the rate of return on the market index.  

r

f

r

f

r

Perfect T

imer’

s Return


25

 Substitute   S  

0

   5  $1 for the current value of the equity portfolio and  X   5  $1  3   e  



 rT 

  in Equation 21.1 of Chapter 21, 

and you will obtain Equation 24.6. 

bod61671_ch24_835-881.indd   859

bod61671_ch24_835-881.indd   859

7/25/13   3:13 AM

7/25/13   3:13 AM

Final PDF to printer




860 

P A R T   V I I

  Applied Portfolio Management

  The Value of Imperfect Forecasting 

 A weather forecaster in Tucson, Arizona, who  always  predicts no rain may be right 90% 

of the time. But a high success rate for a “stopped-clock” strategy is not evidence of fore-

casting ability. Similarly, the appropriate measure of market forecasting ability is not the 

overall proportion of correct forecasts. If the market is up 2 days out of 3 and a forecaster 

always predicts market advance, the two-thirds success rate is not a measure of forecasting 

ability. We need to examine the proportion of bull markets ( r  

 M 

  ,  r  

 f 

 ) correctly forecast  and  

the proportion of bear markets ( r  

 M 

  .  r  

 f 

 ) correctly forecast. 

 If we call  P  

1

  the proportion of the correct forecasts of bull markets and  P  



2

  the propor-

tion for bear markets, then P 

1

   1   P  



2

   2  1 is the correct measure of timing ability. For exam-

ple, a forecaster who always guesses correctly will have  P  

1

   5   P  



2

   5  1, and will show ability 

of   P  

1

   1   P  



2

   2  1  5  1 (100%). An analyst who always bets on a bear market will mispredict 

all bull markets ( P  

1

   5  0), will correctly “predict” all bear markets ( P  



2

   5  1), and will end 

up with timing ability of  P  

1

   1   P  



2

   2  1  5  0. 

 What is the market timing score of someone who flips a fair coin to predict the market? 

 CONCEPT CHECK 



24.4 

  When timing is imperfect, Merton shows that if we measure overall accuracy by the 

statistic  P  

1

   1   P  



2

   2  1, the market value of the services of an imperfect timer is simply

   MV(Imperfect timer)

5 (P

1

P



2

2 1) 3 5 (P

1

P



2

2 1) 32N(½ s



M

"T) 2 14   (24.7)   

 The last column in  Table 24.4  provides an assessment of the imperfect market-timer. To 

simulate the performance of an imperfect timer, we drew random numbers to capture the 

possibility that the timer will sometimes issue an incorrect forecast (we assumed here both 

 P  

1

  and  P  



2

   5  .7) and compiled results for the 86 years of history.  

26

    The  statistics  of  this 



exercise resulted in an average terminal value for the imperfect timer of “only” $8,859, 

compared with the perfect timer’s $352,796, but still considerably superior to the $2,562 

for the all-equity investments.  

27

    



 A further variation on the valuation of market timing is a case in which the timer does 

not shift fully from one asset to the other. In particular, if the timer knows her forecasts are 

imperfect, one would not expect her to shift fully between markets. She presumably would 

moderate her positions. Suppose that she shifts a fraction v of the portfolio between T-bills 

and equities. In that case, Equation 24.7 can be generalized as follows:

   MV(Imperfect timer)

5 v(P

1

P



2

2 1)32N(s



M

"T) 2 14  

 If the shift is  v   5  .50 (50% of the portfolio), the timer’s value will be one-half of the value 

we would obtain for full shifting, for which  v   5  1.0.    

  

26

 In each year, we started with the correct forecast, but then used a random number generator to occasionally 



change the timer’s forecast to an incorrect prediction. We set the probability that the timer’s forecast would be 

correct equal to .70 for both up and down markets.

  

27

 Notice that Equation 24.7 implies that an investor with a value of  P     5  0 who attempts to time the market 



would add zero value. The shifts across markets would be no better than a random decision concerning asset 

allocation.

bod61671_ch24_835-881.indd   860

bod61671_ch24_835-881.indd   860

7/25/13   3:13 AM

7/25/13   3:13 AM

Final PDF to printer



  C H A P T E R  

2 4


  Portfolio Performance Evaluation

861


    24.5 

Style Analysis 



Style analysis  was introduced by Nobel laureate William Sharpe.  

28

   The popularity of the 



concept was aided by a well-known study  

29

   concluding that 91.5% of the variation in returns 



of 82 mutual funds could be explained by the funds’ asset allocation to bills, bonds, and 

stocks. Later studies that considered asset allocation across a broader range of asset classes 

found that as much as 97% of fund returns can be explained by asset allocation alone. 

 Sharpe’s idea was to regress fund returns on indexes representing a range of asset 

classes. The regression coefficient on each index would then measure the fund’s implicit 

allocation to that “style.” Because funds are barred from short positions, the regression 

coefficients are constrained to be either zero or positive and to sum to 100%, so as to rep-

resent a complete asset allocation. The  R -square of the regression would then measure the 

percentage of return variability attributable to style or asset allocation, while the remainder 

of return variability would be attributable either to security selection or to market timing 

by periodic changes in the asset-class weights. 

 To illustrate Sharpe’s approach, we use monthly returns on Fidelity Magellan’s Fund 

during the famous manager Peter Lynch’s tenure between October 1986 and September 

1991, with results shown in  Table  24.5 . While seven asset classes are included in this 

analysis (of which six are represented by stock indexes and one is the T-bill alternative), 

the regression coefficients are positive for only three, namely, large capitalization stocks, 

medium cap stocks, and high P/E (growth) stocks. These portfolios alone explain 97.5% 

of the variance of Magellan’s returns. In other words, a tracking portfolio made up of the 

three style portfolios, with weights as given in  Table 24.5 , would explain the vast majority 

of Magellan’s variation in monthly performance. We conclude that the fund returns are 

well represented by three style portfolios.  

 The proportion of return variability  not  explained by asset allocation can be attrib-

uted to security selection within asset classes, as well as timing that shows up as periodic 

changes in allocation. For Magellan, residual variability was 100  2  97.5  5  2.5%.  This  sort 




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   1038   1039   1040   1041   1042   1043   1044   1045   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish