Investments, tenth edition


Dividends and Call Option Valuation



Download 14,37 Mb.
Pdf ko'rish
bet915/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   911   912   913   914   915   916   917   918   ...   1152
Bog'liq
investment????

  Dividends and Call Option Valuation 

 We noted earlier that the Black-Scholes call option formula applies to stocks that do not 

pay dividends. When dividends are to be paid before the option expires, we need to adjust 

the formula. The payment of dividends raises the possibility of early exercise, and for most 

realistic dividend payout schemes the valuation formula becomes significantly more com-

plex than the Black-Scholes equation. 

 We can apply some simple rules of thumb to approximate the option value, however. 

One popular approach, originally suggested by Black, calls for adjusting the stock price 

downward by the present value of any dividends that are to be paid before option expi-

ration.  

14

   Therefore, we would simply replace  S  



0

  with  S  

0

      2  PV(dividends) in the Black-



Scholes formula. Such an adjustment will take dividends into account by reflecting their 

eventual impact on the stock price. The option value then may be computed as before, 

assuming that the option will be held to expiration.   

 In one special case, the dividend adjustment takes a simple form. Suppose the underlying 

asset pays a continuous flow of income. This might be a reasonable assumption for options 

on a stock index, where different stocks in the index pay dividends on different days, so that 

dividend income arrives in a more or less continuous flow. If the dividend yield, denoted  d ,  is 

constant, one can show that the present value of that dividend flow accruing until the option 

expiration date is  S  

0

  (1  2   e  



 2  d  T 

 ). (For intuition, notice that  e  

 2  d  T 

  approximately equals 1  2   d  T,  

so the value of the dividend is approximately  d  TS  

0

 .) In this case,  S  



0

   2  PV(Div)  5   S  

0

   e  



 2  d  T 

 ,  and 


we can derive a Black-Scholes call option formula on the dividend-paying asset simply by 

substituting  S  

0

   e  



 2  d  T 

  for  S  

0

  in the original formula. This approach is used in Spreadsheet 21.1. 



 These procedures yield a very good approximation of option value for European call 

options that must be held until expiration, but they do not allow for the fact that the holder 

of an American call option might choose to exercise the option just before a dividend. The 

current value of a call option, assuming that it will be exercised just before the ex-dividend 

date, might be greater than the value of the option assuming it will be held until expiration. 

Although holding the option until expiration allows greater effective time to expiration

  

14

 Fischer Black, “Fact and Fantasy in the Use of Options,”  Financial Analysts Journal  31 (July–August 1975). 




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   911   912   913   914   915   916   917   918   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish