Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet412/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   408   409   410   411   412   413   414   415   ...   1152
Bog'liq
investment????

  Portfolio 

Weights  

   w  

 1 

  

   w  

 2 

  

 . . .  

  w  

 GE 

  

 . . .  

  w  

 n 

  

  w  

1

  

 Cov( R  



1

 ,  R  

1

 )  


Cov( R  

1

 ,  R  



2

 )  


. . .  

Cov( R  

1

 ,  R  



GE

 )  


. . .  

Cov( R  

1

 ,  R  



 n 

 ) 


  w  

2

  



 Cov( R  

2

 ,  R  



1

 )  


Cov( R  

2

 ,  R  



2

 )  


. . .  

Cov( R  

2

 ,  R  



GE

 )  


. . .  

Cov( R  

2

 ,  R  



 n 

 ) 


  

.

.



.

 

.



.

.    


.

.

.  



  

 

.



.

.  


  

 

.



.

.  


  w  

GE

  



 Cov( R  

GE

 ,  R  



1

 )  


Cov( R  

 GE 


 ,  R  

2

 )  



. . .  

Cov( R  

GE

 ,  R  



GE

 )  


. . .  

Cov( R  

GE

 ,  R  



 n 

 ) 


 

.

.



.    

.

.



.    

.

.



.  

  

 



.

.

.  



  

 

.



.

.  


  w  

 n 

  

 Cov( R  



 n 

 ,  R  

1

 )  


Cov( R  

 n 

 ,  R  

2

 )  



. . .  

Cov( R  

 n 

 ,  R  

 GE 

 )  


. . .  

Cov( R  

 n 

 ,  R  

 n 

 ) 


bod61671_ch09_291-323.indd   295

bod61671_ch09_291-323.indd   295

6/21/13   3:39 PM

6/21/13   3:39 PM

Final PDF to printer



296 

P A R T   I I I

  Equilibrium in Capital Markets

But because    a



n

i

51

w



i

R

i

R



M

,  Equation 9.4 implies that

   a

n

i

51

w



i

Cov


 

(R



i

R

GE

)

5 Cov



 

(R



M

R

GE



and therefore, GE’s contribution to the variance of the market portfolio (Equation 9.3) may 



be more simply stated as  w  

GE

 Cov( R  



 M 

 ,  R  

GE 

 ). 


 This should not surprise us. For example, if the covariance between GE and the rest 

of the market is negative, then GE makes a “negative contribution” to portfolio risk: By 

providing excess returns that move inversely with the rest of the market, GE stabilizes the 

return on the overall portfolio. If the covariance is positive, GE makes a positive contribu-

tion to overall portfolio risk because its returns reinforce swings in the rest of the portfolio.  

6

    



 We also observe that the contribution of GE to the risk premium of the market portfolio 

is  w  

 GE 

  E ( R  



 GE 

 ).   Therefore, the reward-to-risk ratio for investments in GE can be expressed as

   

GE’s contribution to risk premium



GE’s contribution to variance

5

w

GE

E(R

GE

)



w

GE

Cov(R



GE

R



M

)

5



E(R

GE

)



Cov(R

GE

R



M

)

  



 The market portfolio is the tangency (efficient mean-variance) portfolio. The reward-to-

risk ratio for investment in the market portfolio is

 

   


Market risk premium

Market variance

5

ER

M

)

s



M

2

 



 (9.5)  

The ratio in Equation 9.5 is often called the    market price of risk    because it quantifies the 

extra return that investors demand to bear portfolio risk. Notice that for  components  of the 

efficient portfolio, such as shares of GE, we measure risk as the  contribution  to portfolio 

variance (which depends on its  covariance  with the market). In contrast, for the efficient 

portfolio itself, variance is the appropriate measure of risk.  

7

   


 A basic principle of equilibrium is that all investments should offer the same reward-

to-risk ratio. If the ratio were better for one investment than another, investors would rear-

range their portfolios, tilting toward the alternative with the better trade-off and shying 

away from the other. Such activity would impart pressure on security prices until the ratios 

were equalized. Therefore we conclude that the reward-to-risk ratios of GE and the market 

portfolio should be equal:

 

   


ER

GE

)



Cov( R

GE

R



M

)

5



ER

M

)

s



M

2

 



 (9.6)  

To determine the fair risk premium of GE stock, we rearrange Equation 9.6 slightly to obtain

 

   ER



GE

)

5



Cov(R

GE

R



M

)

s



M

2

 



ER

M

 (9.7)  



  

6

 A positive contribution to variance doesn’t imply that diversification isn’t beneficial. Excluding GE from the 



portfolio would require that its weight be assigned to the remaining stocks, and that reallocation would increase 

variance even more. Variance is reduced by including more stocks and reducing the weight of all (i.e., diversify-

ing), despite the fact that each positive-covariance security makes some contribution to variance. 

  

7



 Unfortunately the market portfolio’s Sharpe ratio

   


E(r

M

)

r



f

s

M

 

sometimes is referred to as the market price of risk, but it is not. The unit of risk is variance, and the price of risk 



relates risk premium to variance (or to covariance for incremental risk). 

bod61671_ch09_291-323.indd   296

bod61671_ch09_291-323.indd   296

6/21/13   3:39 PM

6/21/13   3:39 PM

Final PDF to printer




  C H A P T E R  

9

  The Capital Asset Pricing Model  



297

The  ratio     Cov(R

GE

R



M

)/s


M

2

  measures the contribution of GE stock to the variance of the 



market portfolio as a fraction of the total variance of the market portfolio. The ratio is 

called    beta    and is denoted by  b . Using this measure, we can restate Equation 9.7 as

 

   E(r



GE

)

r



f

1 b


GE

3E(r



M

)

r



f

 (9.8)  



This    expected  return–beta  ( or  mean-beta) relationship    is the most familiar expression 

of the CAPM to practitioners. 

 If the expected return–beta relationship holds for any individual asset, it must hold for 

any combination of assets. Suppose that some portfolio  P  has weight  w  

 k 

  for stock  k,   where 

 k  takes on values 1, . . . ,  n.  Writing out the CAPM Equation 9.8 for each stock, and multi-

plying each equation by the weight of the stock in the portfolio, we obtain these equations

one for each stock:

     w

1

Er

1

)



w

1

r



f

w

1

b

1



3E(r

M

)

r



f

4

 



1w

2

Er

2

)

w



2

r

f

w

2

b

2



3E(r

M

)

r



f

4

 



1       c5 c

 

1w



n

Er

n

)

w



n

r

f

w



n

b

n

3E(r

M

)

r



f

4

 Er



P

)

r



f

1 b


P

3E(r



M

)

r



f

4

 



Summing each column shows that the CAPM holds for the overall portfolio because  

   E(r



P

) 5 


g

k

w

k

E(r

) is the expected return on the portfolio, and b



P

 5 


g

k

w

b

k

      is  the  portfolio 

beta. Incidentally, this result has to be true for the market portfolio itself,

   Er

M

)

r



f

1 b


M

3E(r



M

)

r



f

Indeed, this is a tautology because  b  



 M 

   5  1, as we can verify by noting that

   b

M

5

Cov( R



M

R



M

)

s



M

2

5



s

M

2

s



M

2

 



This also establishes 1 as the weighted-average value of beta across all assets. If the market 

beta is 1, and the market is a portfolio of all assets in the economy, the weighted-average 

beta of all assets must be 1. Hence betas greater than 1 are considered aggressive in that 

investment in high-beta stocks entails above-average sensitivity to market swings. Betas 

below 1 can be described as defensive. 

 A word of caution: We often hear that well-managed firms will provide high rates of 

return. We agree this is true if one measures the  firm’s  return on its investments in plant 

and equipment. The CAPM, however, predicts returns on investments in the  securities  

of the firm. 

 Let’s say that everyone knows a firm is well run. Its stock price will therefore be bid 

up, and consequently returns to stockholders who buy at those high prices will not be 

excessive. Security prices, in other words, already reflect public information about a firm’s 

prospects; therefore only the risk of the company (as measured by beta in the context of 

the CAPM) should affect expected returns. In a well-functioning market, investors receive 

high expected returns only if they are willing to bear risk. 

 Investors do not directly observe or determine expected returns on securities. Rather, 

they observe security prices and bid those prices up or down. Expected rates of return are 

determined by the prices investors must pay compared to the cash flows those investments 

might  garner.   

bod61671_ch09_291-323.indd   297

bod61671_ch09_291-323.indd   297

6/21/13   3:39 PM

6/21/13   3:39 PM

Final PDF to printer




298

P A R T   I I I

  Equilibrium in Capital Markets


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   408   409   410   411   412   413   414   415   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish