Ikki o’zgaruvchili garmonik funksiyalar bir qiymatli analitik funksiyaning haqiqiy yoki mavhum qismidan iborat bo’lib, Laplas tenglamasining yechimi bo’ladi



Download 0,72 Mb.
bet5/8
Sana23.07.2022
Hajmi0,72 Mb.
#840341
1   2   3   4   5   6   7   8
Bog'liq
Elliptik tipdagi garmonik funksiyalar

Yechish. Berilishiga ko’ra funksiya sonlar tekisligida, xususan berilgan doirada uzluksiz va istalgan tartibli uzluksiz xususiy hosilalarga ega. Dastlab berilgan funksiyani doirada garmoniklikka tekshiramiz. Buning uchun uning xususiy hosilalarini hisoblaymiz:

.
U holda bu funksiya uchun

bo’lib, u Laplas tenglamasining regulyar yechimi, ya’ni tekislikdagi barcha nuqtalarda, xususan doirada ham garmonik funksiya bo’ladi.
Demak bu funksiya uchun garmonik funksiya uchun maksimum qiymat prinsipini qo’llash mumkin. Bu funksiya garmonik bo’lgan doira chegarasi aylanadan iborat bo’lib, chegaraviy nuqtalarda tenglik o’rinli bo’lib, bu nuqtalar to’plamida qaralayotgan funksiya

ko’rinish oladi. Bu kvadrat funksiya bo’lib, u nuqtada maksimum qiymatga va nuqtada esa minimum qiymatga erishadi. Erkli o’zgaruvchi   ning qiymatiga   ning va qiymatga esa qiymati mos keladi.
Shunday qilib berilgan funksiya chegaraviy nuqtalarda

eng katta (maksimum) qiymatiga va chegaraviy nuqtada esa

eng kichik (minimum) qiymatiga erishadi.
4-xossa. Agar sohada garmonik funksiya hech bo’lmaganda yuqori yoki quyidan chegaralangan bo’lsa, u holda u o’zgarmas.
Isbot. funksiya sohada yuqoridan chegaralangan bo’lsin: dir. Butun sohada shunday bir qiymatli analitik funksiyani quramizki, . Shartiga ko’ra funksiyaning barcha qiymatlari yarim tekislikda yotadi. funksiya o’zgarmas, demak, ham o’zgarmasdir. Xossa isbot qilindi.
Quyidagi o’rta qiymat haqidagi teoremaga teskari teoremalardan iboratdir.
5-xossa. Agar funksiya sohada uzliksiz va yetarlicha kichik -lar uchun ixtiyoriy nuqtada

bo’lsa, u holda funksiya sohada garmonikdir.
Quyidagi xossa kompleks o’zgaruvchi funksional qatorlar uchun o’rganilgan Veyeritrass teoremasiga o’xshashdir.
6-xossa. sohada garmonik va da uzluksiz bo’lgan garmonik funksiyalar ketma-ketligi berilgan bo’lsin. Agar qator ning chegarasida tekis yaqinlashsa, u holda bu qator -ning ichida ham tekis yaqinlashadi va uning yig’indisi ham sohada garmonik funksiya bo’ladi.
7-xossa. Agar funksiya bir bog’lamli sohada garmonik va o’zining xususiy hosilasi bilan da uzluksiz bo’lsa, u holda
,
bu yerda -normal bo’yicha hosilasi, -yoyning differensiali.



Download 0,72 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish