Partial differential equations



Download 1,53 Mb.
Pdf ko'rish
bet9/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   5   6   7   8   9   10   11   12   ...   30
Bog'liq
20050415 English


5
Fourier Series
In this chapter we discuss Fourier series and the application to the solution of PDEs by
the method of separation of variables. In the last section, we return to the solution of
the problems in Chapter 4 and also show how to solve Laplace’s equation. We discuss the
eigenvalues and eigenfunctions of the Laplacian. The application of these eigenpairs to the
solution of the heat and wave equations in bounded domains will follow in Chapter 7 (for
higher dimensions and a variety of coordinate systems) and Chapter 8 (for nonhomogeneous
problems.)
5.1
Introduction
As we have seen in the previous chapter, the method of separation of variables requires
the ability of presenting the initial condition in a Fourier series. Later we will find that
generalized Fourier series are necessary. In this chapter we will discuss the Fourier series
expansion of (x), i.e.
(x)

a
0
2
+


n=1
a
n
cos

L
b
n
sin

L
x

.
(5.1.1)
We will discuss how the coefficients are computed, the conditions for convergence of the
series, and the conditions under which the series can be differentiated or integrated term by
term.
Definition 11. A function (x) is piecewise continuous in [a, b] if there exists a finite number
of points x
1
< x
2
< . . . < x
n
b, such that is continuous in each open interval
(x
j
, x
j+1
) and the one sided limits (x
j+
) and (x
j+1
) exist for all j
≤ n − 1.
Examples
1. (x) = x
2
is continuous on [a, b].
2.
(x) =

x
0
≤ x < 1
x
2
− x < x ≤ 2
The function is piecewise continuous but not continuous because of the point = 1.
3. (x) =
1
x
− ≤ x ≤ 1The function is not piecewise continuous because the one
sided limit at = 0 does not exist.
Definition 12. A function (x) is piecewise smooth if (x) and f

(x) are piecewise continuous.
Definition 13. A function (x) is periodic if (x) is piecewise continuous and (xp) = (x)
for some real positive number and all x. The number is called a period. The smallest
period is called the fundamental period.
Examples
1. (x) = sin is periodic of period 2π.
85

2. (x) = cos is periodic of period 2π.
Note: If f
i
(x),
= 12,
· · · , n
are all periodic of the same period then the linear
combination of these functions
n

i=1
c
i
f
i
(x)
is also periodic of period p.
5.2
Orthogonality
Recall that two vectors and in
R
n
are called orthogonal vectors if
a
· b =
n

i=1
a
i
b
i
= 0.
We would like to extend this definition to functions. Let (x) and g(x) be two functions
defined on the interval [α, β]. If we sample the two functions at the same points x
i
, i =
12,
· · · , n then the vectors and  G, having components f(x
i
) and g(x
i
) correspondingly,
are orthogonal if
n

i=1
(x
i
)g(x
i
) = 0.
If we let to increase to infinity then we get an infinite sum which is proportional to

β
α
(x)g(x)dx.
Therefore, we define orthogonality as follows:
Definition 14. Two functions (x) and g(x) are called orthogonal on the interval (α, β) with
respect to the weight function w(x0 if

β
α
w(x)(x)g(x)dx = 0.
Example 1
The functions sin and cos are orthogonal on [
−π, π] with respect to w(x) = 1,

π
−π
sin cos xdx =
1
2

π
−π
sin 2xdx =

1
4
cos 2x
|
π
−π
=

1
4
+
1
4
= 0.
Definition 15. A set of functions

n
(x)
is called orthogonal system with respect to w(x)
on [α, β] if

β
α
φ
n
(x)φ
m
(x)w(x)dx = 0,
for m
n.
(5.2.1)
86

Definition 16. The norm of a function (x) with respect to w(x) on the interval [α, β] is
defined by
f  =

β
α
w(x)f
2
(x)dx

1/2
(5.2.2)
Definition 17. The set

n
(x)
is called orthonormal system if it is an orthogonal system
and if
φ
n
 = 1.
(5.2.3)
Examples
1.

sin

L
x

is an orthogonal system with respect to w(x) = 1 on [
−L, L].
For n
m

L
−L
sin

L
sin

L
xdx
=

L
−L


1
2
cos
(m)π
L
+
1
2
cos
(n
− m)π
L
x

dx
=


1
2
L
(m)π
sin
(m)π
L
+
1
2
L
(n
− m)π
sin
(n
− m)π
L
x

L
−L
= 0
2.

cos

L
x

is also an orthogonal system on the same interval. It is easy to show that for
n
m

L
−L
cos

L
cos

L
xdx
=

L
−L

1
2
cos
(m)π
L
+
1
2
cos
(n
− m)π
L
x

dx
=

1
2
L
(m)π
sin
(m)π
L
+
1
2
L
(n
− m)π
sin
(n
− m)π
L
x

|
L
−L
= 0
3. The set
{1cos x, sin x, cos 2x, sin 2x, · · · , cos nx, sin nx, · · ·} is an orthogonal system on
[
−π, π] with respect to the weight function w(x) = 1.
We have shown already that

π
−π
sin nx sin mxdx = 0
for n
m
(5.2.4)

π
−π
cos nx cos mxdx = 0
for n
m.
(5.2.5)
87

The only thing left to show is therefore

π
−π
1
· sin nxdx = 0
(5.2.6)

π
−π
1
· cos nxdx = 0
(5.2.7)
and

π
−π
sin nx cos mxdx = 0
for any n, m.
(5.2.8)
Note that

π
−π
sin nxdx =

cos nx
n
|
π
−π
=

1
n
(cos 
− cos(−nπ)) = 0
since
cos nπ = cos(
−nπ) = (1)
n
.
(5.2.9)
In a similar fashion we demonstrate (5.2.7). This time the antiderivative
1
n
sin nx vanishes
at both ends.
To show (5.2.8) we consider first the case m. Thus

π
−π
sin nx cos nxdx =
1
2

π
−π
sin 2nxdx =

1
4n
cos 2nx
|
π
−π
= 0
For n
m, we can use the trigonometric identity
sin ax cos bx =
1
2
[sin(b)+ sin(a
− b)x.
(5.2.10)
Integrating each of these terms gives zero as in (5.2.6). Therefore the system is orthogonal.
5.3
Computation of Coefficients
Suppose that (x) can be expanded in Fourier series
(x)

a
0
2
+


k=1

a
k
cos

L
b
k
sin

L
x

.
(5.3.1)
The infinite series may or may not converge. Even if the series converges, it may not give
the value of (x) at some points. The question of convergence will be left for later. In this
section we just give the formulae used to compute the coefficients a
k
b
k
.
a
0
=
1
L

L
−L
(x)dx,
(5.3.2)
a
k
=
1
L

L
−L
(x) cos

L
xdx
for = 12, . . .
(5.3.3)
88

b
k
=
1
L

L
−L
(x) sin

L
xdx
for = 12, . . .
(5.3.4)
Notice that for = 0 (5.3.3) gives the same value as a
0
in (5.3.2). This is the case only if
one takes
a
0
2
as the first term in (5.3.1), otherwise the constant term is
1
2L

L
−L
(x)dx.
(5.3.5)
The factor in (5.3.3)-(5.3.4) is exactly the square of the norm of the functions sin

L
and
cos

L
x. In general, one should write the coefficients as follows:
a
k
=

L
−L
(x) cos

L
xdx

L
−L
cos
2

L
xdx
,
for = 12, . . .
(5.3.6)
b
k
=

L
−L
(x) sin

L
xdx

L
−L
sin
2

L
xdx
,
for = 12, . . .
(5.3.7)
These two formulae will be very helpful when we discuss generalized Fourier series.
Example 2
Find the Fourier series expansion of
(x) = x
on [
−L, L]
a
k
=
1
L

L
−L
cos

L
xdx
=
1
L

L

sin

L
+
L


2
cos

L
x

L
−L
The first term vanishes at both ends and we have
=
1
L
L


2
[cos 
− cos(−kπ)] = 0.
b
k
=
1
L

L
−L
sin

L
xdx
=
1
L


L

cos

L
+
L


2
sin

L
x

L
−L
.
Now the second term vanishes at both ends and thus
b
k
=

1

[cos 
− (−L) cos(−kπ)] = 
2L

cos kπ =

2L

(
1)
k
=
2L

(
1)
k+1
.
89

−2
−1
0
1
2
−2
−1
0
1
2
−2
−1
0
1
2
−3
−2
−1
0
1
2
3
−2
−1
0
1
2
−3
−2
−1
0
1
2
3
−2
−1
0
1
2
−3
−2
−1
0
1
2
3
Figure 28: Graph of (x) = and the N
th
partial sums for = 151020
Therefore the Fourier series is
x



k=1
2L

(
1)
k+1
sin

L
x.
(5.3.8)
In figure 28 we graphed the function (x) = and the N
th
partial sum for = 151020.
Notice that the partial sums converge to (x) except at the endpoints where we observe the
well known Gibbs phenomenon. (The discontinuity produces spurious oscillations in the
solution).
Example 3
Find the Fourier coefficients of the expansion of
(x) =

1 for − L < x < 0
1
for 0 < x < L
(5.3.9)
a
k
=
1
L

0
−L
(
1) cos

L
xdx +
1
L

L
0
1
· cos

L
xdx
=

1
L
L

sin

L
x
|
0
−L
+
1
L
L

sin

L
x
|
L
0
= 0,
a
0
=
1
L

0
−L
(
1)dx +
1
L

L
0
1dx
=

1
L
x
|
0
−L
+
1
L
x
|
L
0
=
1
L
(
−L) +
1
L
· L = 0,
90

−2
−1
0
1
2
−1.5
−1
−0.5
0
0.5
1
1.5
−2
−1
0
1
2
−1.5
−1
−0.5
0
0.5
1
1.5
−2
−1
0
1
2
−1.5
−1
−0.5
0
0.5
1
1.5
−2
−1
0
1
2
−1.5
−1
−0.5
0
0.5
1
1.5
Figure 29: Graph of (x) given in Example 3 and the N
th
partial sums for = 151020
b
k
=
1
L

0
−L
(
1) sin

L
xdx +
1
L

L
0
1
· sin

L
xdx
=
1
L
(
1)

L


cos

L
x
|
0
−L
+
1
L

L


cos

L
x
|
L
0
=
1

[1
− cos(−kπ)] 
1

[cos 
− 1]
=
2


1
− (1)
k

.
Therefore the Fourier series is
(x)



k=1
2


1
− (1)
k

sin

L
x.
(5.3.10)
The graphs of (x) and the N
th
partial sums (for various values of ) are given in figure 29.
In the last two examples, we have seen that a
k
= 0. Next, we give an example where all
the coefficients are nonzero.
Example 4
(x) =

1
L
+ 1
−L < x < 0
x
< x < L
(5.3.11)
91

−10
−8
−6
−4
−2
0
2
4
6
8
10
−4
−2
0
2
4
6
8
−L
L
Figure 30: Graph of (x) given in Example 4
a
0
=
1
L

0
−L
1
L
+ 1

dx +
1
L

L
0
xdx
=
1
L
2
x
2
2
|
0
−L
+
1
L
x
|
0
−L
+
1
L
x
2
2
|
L
0
=

1
2
+ 1 +
L
2
=
+ 1
2
,
a
k
=
1
L

0
−L
1
L
+ 1

cos

L
xdx +
1
L

L
0
cos

L
xdx
=
1
L
2

L

sin

L
+
L


2
cos

L
x

0
−L
+
1
L
L

sin

L
x
|
0
−L
+
1
L

L

sin

L
+
L


2
cos

L
x

L
0
=
1
L
2
L


2

1
L
2
L


2
cos kπ +
1
L
L


2
cos 

1
L
L


2
=
1
− L
()
2

1
− L
()
2
(
1)
k
=
1
− L
()
2
1
− (1)
k
,
92

−1
−0.5
0
0.5
1
0
0.2
0.4
0.6
0.8
1
−1
−0.5
0
0.5
1
0
0.2
0.4
0.6
0.8
1
−1
−0.5
0
0.5
1
−0.5
0
0.5
1
1.5
−1
−0.5
0
0.5
1
−0.5
0
0.5
1
1.5
Figure 31: Graph of (x) given by example 4 (= 1) and the N
th
partial sums for =
151020. Notice that for = 1 all cosine terms and odd sine terms vanish, thus the first
term is the constant .5
b
k
=
1
L

0
−L
1
L
+ 1

sin

L
xdx +
1
L

L
0
sin

L
xdx
=
1
L
2


L

cos

L
+
L


2
sin

L
x

0
−L
+
1
L
L

(
− cos

L
x)
|
0
−L
+
1
L


L

cos

L
+
L


2
sin

L
x

L
0
=
1
L
2
L

(
−L) cos kπ −
1

+
1

cos 

L

cos 
=

1

1 + (
1)
k
L
,
therefore the Fourier series is
(x) =
+ 1
4
+


k=1

1
− L
()
2

1
− (1)
k

cos

L
x

1


1 + (
1)
k
L

sin

L
x

The sketches of (x) and the N
th
partial sums are given in figures 31-33 for various values
of L.
93

−0.5
0
0.5
0
0.2
0.4
0.6
0.8
1
−0.5
0
0.5
0
0.5
1

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish