Partial differential equations



Download 1,53 Mb.
Pdf ko'rish
bet12/30
Sana10.12.2019
Hajmi1,53 Mb.
#29388
1   ...   8   9   10   11   12   13   14   15   ...   30
Bog'liq
20050415 English


SUMMARY
Fourier Series
(x)

a
0
2
+


n=1
a
n
cos

L
b
n
sin

L
x

a
k
=
1
L

L
−L
(x) cos

L
xdx
for = 012, . . .
b
k
=
1
L

L
−L
(x) sin

L
xdx
for = 12, . . .
Solution of Euler’s equation
r(rR

)

− λR = 0
For λ
0
= 0 the solution is R
0
C
1
ln C
2
For λ
n
n
2
the solution is R
n
D
1
r
n
D
2
r
−n
,
= 12, . . .
119

6
Sturm-Liouville Eigenvalue Problem
6.1
Introduction
In the previous chapters, we introduced the method of separtion of variables and gave several
examples of constant coefficient partial differential equations. The method in these cases led
to the second order ordinary differential equation
X

(x) + λX(x) = 0
subject to a variety of boundary conditions. We showed that such boundary value problems
have solutions (eigenfunctions X
n
) for certain discrete values of λ
n
(eigenvalues).
In this chapter we summarize those results in a theorem and show how to use this theorem
for linear partial differential equations NOT having constant coefficients. We start by giving
several examples of such linear partial differential equations.
Example
Heat flow in a nonuniform rod.
Recall that the temperature distribution in a rod is given by (1.3.7)
c(x)ρ(x)
∂u
∂t
=

∂x

K
∂u
∂x

S ,
(6.1.1)
where c(x) is the specific heat, ρ(x) is the mass density and K(x) is the thermal conduc-
tivity. The method of separation of variables was only applied to homogeneous problems
(nonhomogeneous problems will be discussed in Chapter 8). Therefore the only possibility
for the source is
S(x, t) = α(x)u(x, t).
(6.1.2)
Such problems may arise in chemical reactions that generate heat (S > 0) or remove heat
(S < 0). We now show how to separate the variables for (6.1.1) - (6.1.2). Let, as before,
u(x, t) = X(x)(t)
be substituted in the PDE, then
c(x)ρ(x)X(x) ˙
(t) = (t) (K(x)X

(x))

α(x)X(x)(t).
(6.1.3)
Divide by c(x)ρ(x)X(x)(t) then (6.1.3) becomes
˙
(t)
(t)
=
1
c(x)ρ(x)
(K(x)X

(x))

X(x)
+
α(x)
c(x)ρ(x)
.
(6.1.4)
Now the variables are separated, and therefore, as we have seen in Chapter 4,
˙
(t) + λT (t) = 0
(6.1.5)
(K(x)X

(x))

α(x)X(x) + λc(x)ρ(x)X(x) = 0.
(6.1.6)
120

Note the differences between these two ODE’s and the constant coefficients case :
i.
The equation has no constant in the term containing λ, since that is no longer a
constant.
ii.
The equation contains three terms. The first one is different than the constant
coefficient case because is a function of x. The second term is the result of the special
form of inhomogeneity of the problem. The third term contains a fuction c(x)ρ(x) multiplying
the second term of the constant coefficients case.
Remark : Note that if Kc, and ρ were constants then (6.1.6) becomes
KX

(x) + α(x)X(x) + λcρX(x) = 0.
In this case one could go back to (6.1.4) and have

K
on the side. The question we
will discuss in this chapter is : What can we conclude about the eigenvalues λ
n
and the
eigenfunctions X
n
(x) of (6.1.6). Physically we know that if α > 0 some negative eigenvalues
are possible. (Recall that if λ < 0, grows exponentially since the equation (6.1.5) has
the solution (t) = ce
−λt
.)
Example
Circularly symmetric heat flow problem
Recall that heat flow in a disk of radius can be written in polar coordinates as follows
(Exercise 4, Section 5.9)
d
dr

r
dR
dr

λrR(r) = 0,
< r < a
(6.1.7)
|R(0)| < ∞.
(singularity condition)
The coefficients are not constants in this case, even though the disk is uniform.
Definition 18. The Sturm - Liouville differential equation is of the form
d
dx

p(x)
dX(x)
dx

q(x)X(x) + λσ(x)X(x) = 0,
a < x < b.
(6.1.8)
Examples :
i. = 1, q = 0, σ = 1,
see (4.1.8).
ii. k, q α, σ cρ,
see (6.1.6).
iii. p(r) = r, q = 0, σ(r) = r,
see (6.1.7).
The following boundary conditions were discussed
X(0) = X(L) = 0,
X

(0) = X(L) = 0,
X(0) = X

(L) = 0,
X

(0) = X

(L) = 0,
X(0) = 0, X(L) + X

(L) = 0,
(Exercise 1e, Ch. 4.2)
121

X(0) = X(L), X

(0) = X

(L),
|X(0)| < ∞.
Definition 19. A Sturm-Liouville differential equation (6.1.8) along with the boundary con-
ditions
β
1
X(a) + β
2
X

(a) = 0,
(6.1.9)
β
3
X(b) + β
4
X

(b) = 0.
(6.1.10)
where β
1
β
2
β
3
, and β
4
are real numbers is called a regular Sturm-Liouville problem, if
the coefficients p(x), q(x), and σ(x) are real and continuous functions and if both p(x) and
σ(x) are positive on [a, b]. Note that except periodic conditions and singularity, all other
boundary conditions discussed are covered by the above set.
Theorem For a regular Sturm-Liouville problem the following is true
i. All the eigenvalues λ are real
ii. There exist an infinite number of eigenvalues
λ
1
< λ
2
< . . . < λ
n
< . . .
a. there is a smallest eigenvalue denoted by λ
1
b. λ
n
→ ∞
as
n
→ ∞
iii. Corresponding to each λ
n
there is an eigenfunction X
n
(unique up to an arbitrary
multiplicative constant). X
n
has exactly n
1 zeros in the open interval (a, b). This is called
oscillation theorem.
iv. The eigenfunctions form a complete set, i.e. any smooth function (x) can be represented
as
(x)



n=1
a
n
X
n
(x).
(6.1.11)
This infinite series, called generalized Fourier series, converges to
(x
+
) + (x

)
2
if a
n
are
properly chosen.
v. Eigenfunctions belonging to different eigenvalues are orthogonal relative to the weight σ,
i.e.

b
a
σ(x)X
n
(x)X
m
(x)dx = 0,
if
λ
n
λ
m
.
(6.1.12)
vi. Any eigenvalue can be related to its eigenfunction by the following, so called, Rayleigh
quotient
λ =
−p(x)X(x)X

(x)
|
b
a
+
(
b
a
{p(x)[X

(x)]
2
− q(x)X
2
(x)
} dx
(
b
a
σ(x)X
2
(x)dx
.
(6.1.13)
The boundary conditions may simplify the boundary term in the numerator. The Rayleigh
quotient can be used to approximate the eigenvalues and eigenfunctions. The proof and
some remarks about generalizations will be given in the appendix.
122

Example
X

λX = 0,
(6.1.14)
X(0) = 0,
(6.1.15)
X(L) = 0.
(6.1.16)
We have found that
λ
n
=

L

2
,
= 12, . . .
(6.1.17)
X
n
= sin

L
x,
= 12, . . .
(6.1.18)
Clearly all eigenvalues are real. The smallest one is λ
1
=
π
L

2
. There is no largest as can
be seen from (6.1.17). For each eigenvalue there is one eigenfunction. The eigenfunction
X
1
= sin
π
L
x, for example, does NOT vanish inside the interval (0, L). X
2
vanishes once
inside the interval (0, L), i.e. X
2
= 0 for =
L
2
. The generalized Fourier series in this case
is the Fourier sine series and the coefficients are
a
n
=

L
0
(x) sin

L
xdx
(
L
0
sin

L
xdx
(note σ
≡ 1 ).
(6.1.19)
The Rayleigh quotient in this case is
λ =
−X(x)X

(x)
|
L
0
+
(
L
0
[X

(x)]
2
dx
(
L
0
X
2
(x)dx
=
(
L
0
[X

(x)]
2
dx
(
L
0
X
2
(x)dx
.
(6.1.20)
This does NOT determine λ, but one can see that λ > 0 (Exercise).
Example
nonuniform rod
c(x)ρ(x)u
t
= (K(x)u
x
)
x
,
(6.1.21)
u(0, t) = u
x
(L, t) = 0,
(6.1.22)
u(x, 0) = (x).
(6.1.23)
The method of separation of variables yields two ODE’s
˙
(t) + λT (t) = 0,
(6.1.24)
(K(x)X

(x))

λc(x)ρ(x)X(x) = 0,
(6.1.25)
X(0) = 0,
(6.1.26)
X

(L) = 0.
(6.1.27)
123

We cannot obtain the eigenvalues and eigenfunctions but we know from the last theorem
that the solution is
u(x, t) =


n=1
T
n
(0)e
−λ
n
t
X
n
(x)
(6.1.28)
where
T
n
(0) =
(
L
0
(x)X
n
(x)c(x)ρ(x)dx
(
L
0
X
2
n
(x)c(x)ρ(x)dx
.
(6.1.29)
(The details are left for the reader.)
What happens for t large (the system will approach a steady state) can be found by examining
(6.1.28). Since λ
n
→ ∞ as n → ∞, the solution will be
u(x, t)
≈ T
1
(0)e
−λ
1
t
X
1
(x)
(if T
1
(0)
= 0),
(6.1.30)
since other terms will be smaller because of the decaying exponential factor. Therefore the
first eigenpair λ
1
, X
1
(x) is sufficient for the steady state. This eigenpair can be found by
approximation of the Rayleigh quotient.
Definition 20. A Sturm-Liouville problem is called singular if either one of the following
conditions occurs :
i. The function p(x) vanishes at one or both of the endpoints.
ii. One or more of the coefficients p(x), q(x), or σ(x) becomes infinite at either of the
endpoints.
iii. One of the endpoints is infinite.
Example
The circularly symmetric heat flow problem
d
dr

r
dR
dr

λrR(r) = 0,
< r < a,
leads to a singular Sturm-Liouville problem since p(r) = vanishes at = 0.
124

Problems
1. a. Show that the following is a regular Sturm-Liouville problem
X

(x) + λX(x) = 0,
X(0) = 0,
X

(L) = 0.
b. Find the eigenpairs λ
n
X
n
directly.
c. Show that these pairs satisfy the results of the theorem.
2. Prove (6.1.28) - (6.1.30).
3. a.
Is the following a regular Sturm-Liouville problem?
X

(x) + λX(x) = 0,
X(0) = X(L),
X

(0) = X

(L).
Why or why not?
b.
Find the eigenpairs λ
n
X
n
directly.
c.
Do they satisfy the results of the theorem? Why or why not?
4. Solve the regular Sturm-Liouville problem
X

(x) + aX(x) + λX(x) = 0,
a > 0,
X(0) = X(L) = 0.
For what range of values of is λ negative?
5. Solve the ODE
X

(x) + 2αX(x) + λX(x) = 0,
α > 1,
X(0) = X

(1) = 0.
6. Consider the following Sturm-Liouville eigenvalue problem
d
dx

x
du
dx

λ
1
x
= 0,
< x < 2,
with boundary conditions
u(1) = u(2) = 0.
125

Determine the sign of all the eigenvalues of this problem (you don’t have to explicitly deter-
mine the eigenvalues). In particular, is zero an eigenvalue of this problem?
7. Consider the following model approximating the motion of a string whose density (along
the string) is proportional to (1 + x)
2
,
(1 + x)
2
u
tt
− u
xx
= 0,
< x < 1,
t > 0
subject to the following initial conditions
u(x, 0) = (x),
u
t
(x, 0) = 0,
and boundary conditions
u(0, t) = u(L, t) = 0.
a.
Show that the ODE for resulting from separation of variables is
X

+
λ
(1 + x)
2
= 0.
b.
Obtain the boundary conditions and solve.
Hint: Try = (1 + x)
a
.
126

6.2
Boundary Conditions of the Third Kind
In this section we discuss the solution of a regular Sturm-Liouville problem having a more
general type of boundary conditions. We will show that even though the coefficients are
constant, we cannot give the eigenvalues in closed form.
Example
Suppose we want to find the temperature distribution in a rod of length L where the right
end is allowed to cool down, i.e.
u
t
ku
xx
< x < L,
(6.2.1)
u(0, t) = 0,
(6.2.2)
u
x
(L, t) =
−hu(L, t),
(6.2.3)
u(x, 0) = (x),
where is a positive constant.
The Sturm-Liousville problem is (see exercise)
X

λX = 0,
(6.2.4)
X(0) = 0,
(6.2.5)
X

(L) =
−hX(L).
(6.2.6)
We consider these three cases for λ. (If we prove that the operator is self-adjoint, then we
get that the eigenvalues must be real.)
−2
−1
0
1
2
3
4
5
6
7
8
−4
−3
−2
−1
0
1
2
3
4
Figure 47: Graphs of both sides of the equation in case 1
Case 1: λ < 0
The solution that satisfies (6.2.5) is
sinh

−λx.
(6.2.7)
127

To satisfy (6.2.6) we have
A

−λ cosh

−λL −hA sinh

−λL,
or
tanh

−λL 
1
hL

−λL.
(6.2.8)
This equation for the eigenvalues can be solved either numerically or graphically. If we sketch
tanh

−λL and 
1
hL

−λL as functions of

−λL then, since h > 0, we have only one point
of intersection, i.e.

−λL = 0. Since L > 0 (length) and λ < 0 (assumed in this case), this
point is not in the domain under consideration. Therefore λ < 0 yields a trivial solution.
Case 2: λ = 0
In this case the solution satisfying (6.2.5) is
Bx.
(6.2.9)
Using the boundary condition at L, we have
B(1 + hL) = 0,
(6.2.10)
Since L > 0 and h > 0, the only possibility is again the trivial solution.
−2
−1
0
1
2
3
4
5
6
7
8
−10
−8
−6
−4
−2
0
2
4
6
8
Figure 48: Graphs of both sides of the equation in case 3
Case 3: λ > 0
The solution is
sin

λx,
(6.2.11)
and the equation for the eigenvalues λ is
tan

λL =


λ
h
(6.2.12)
(see exercise).
128

Graphically, we see an infinite number of solutions, all eigenvalues are positive and the reader
should show that
λ
n


(n

1
2
)π
L

2
as n
→ ∞.
129

Problems
1. Use the method of separation of variables to obtain the ODE’s for and for for equations
(6.2.1) - (6.2.3).
2. Give the details for the case λ > 0 in solving (6.2.4) - (6.2.6).
3. Discuss
lim
n→∞
λ
n
for the above problem.
4.
Write the Rayleigh quotient for (6.2.4) - (6.2.6) and show that the eigenvalues are all
positive. (That means we should have considered only case 3.)
5. What if h < 0 in (6.2.3)? Is there an h for which λ = 0 is an eigenvalue of this problem?
130

6.3
Proof of Theorem and Generalizations
In this section, we prove the theorem for regular Sturm-Liouville problems and discuss some
generalizations. Before we get into the proof, we collect several auxiliary results.
Let
be the linear differential operator
Lu =
d
dx

p(x)
du
dx

q(x)u.
(6.3.1)
Therefore the Sturm-Liouville differential equation (6.1.8) can be written as
LX λσX = 0.
(6.3.2)
Lemma For any two differentiable functions u(x), v(x) we have
u
Lv − vLu =
d
dx

p(x)

u
dv
dx
− v
du
dx

.
(6.3.3)
This is called Lagrange’s identity.
Proof:
By (6.3.1)
Lu = (pu

)

qu,
Lv = (pv

)

qv,
therefore
u
Lv − vLu (pv

)

uqv
− v (pu

)

− vqu,
since the terms with cancel out, we have
=
d
dx
(pv

u)
− u

pv



d
dx
(pu

v)
− pu

v


=
d
dx
[(v

u
− u

v)] .
Lemma For any two differentable functions u(x), v(x) we have

b
a
[u
Lv − vLudx p(x) (uv

− vu

)
|
b
a
.
(6.3.4)
This is called Green’s formula.
Definition 21. A differential operator
defined by (6.3.1) is called self-adjoint if

b
a
(u
Lv − vLudx = 0
(6.3.5)
for any two differentiable functions satisfying the boundary conditions (6.1.9)-(6.1.10).
131

Remark: It is easy to show and is left for the reader that the boundary conditions (6.1.9)-
(6.1.10) ensure that the right hand side of (6.3.4) vanishes.
We are now ready to prove the theorem and we start with the proof that the eigenfunc-
tions are orthogonal.
Let λ
n
λ
m
be two distinct eigenvalues with corresponding eigenfunctions X
n
X
m
, that
is
LX
n
λ
n
σX
n
= 0,
LX
m
λ
m
σX
m
= 0.
(6.3.6)
In addition, the eigenfunctions satisfy the boundary conditions. Using Green’s formula we
have

b
a
(X
m
LX
n
− X
n
LX
m
dx = 0.
Now use (6.3.6) to get
(λ
n
− λ
m
)

b
a
X
n
X
m
σdx = 0
and since λ
n
λ
m
we must have

b
a
X
n
X
m
σdx = 0
which means that (see definition 14) X
n
X
m
are orthogonal with respect to the weight σ on
the interval (a, b).
This result will help us prove that the eigenvalues are real.
Suppose that λ is a complex eigenvalue with eigenfunction X(x), i.e.
LX λσX = 0.
(6.3.7)
If we take the complex conjugate of the equation (6.3.7) we have (since all the coefficients
of the differential equation are real)
¯
+ ¯
λσ ¯
= 0.
(6.3.8)
The boundary conditions for are
β
1
X(a) + β
2
X

(a) = 0,
β
3
X(b) + β
4
X

(b) = 0.
Taking the complex conjugate and recalling that all β
i
are real, we have
β
1
¯
X(a) + β
2
¯
X

(a) = 0,
β
3
¯
X(b) + β
4
¯
X

(b) = 0.
Therefore ¯
satisfies the same regular Sturm-Liouville problem. Now using Green’s formula
(6.3.4) with and = ¯
X, and the boundary conditions for X, ¯
X, we get

b
a
X
¯
X
− ¯
X
LX
dx = 0.
(6.3.9)
132

But upon using the differential equations (6.3.7)-(6.3.8) in (6.3.9) we have
λ
− ¯λ
 
b
a
σX ¯
Xdx = 0.
Since is an eigenfunction then is not zero and ¯
=
|X|
2
0Therefore the integral
is positive (σ > 0) and thus λ = ¯
λ and hence λ is real. Since λ is an arbitrary eigenvalue,
then all eigenvalues are real.
We now prove that each eigenvalue has a unique (up to a multiplicative constant) eigen-
function.
Suppose there are two eigenfunctions X
1
X
2
corresponnding to the same eigenvalue λ,
then
LX
1
λσX
1
= 0,
(6.3.10)
LX
2
λσX
2
= 0.
(6.3.11)
Multiply (6.3.10) by X
2
and (6.3.11) by X
1
and subtract, then
X
2
LX
1
− X
1
LX
2
= 0,
(6.3.12)
since λ is the same for both equations. On the other hand, the left hand side, by Lagrange’s
identity (6.3.3) is
X
2
LX
1
− X
1
LX
2
=
d
dx
[(X
2
X

1
− X
1
X

2
)] .
(6.3.13)
Combining the two equations, we get after integration that
(X
2
X

1
− X
1
X

2
) = constant.
(6.3.14)
It can be shown that the constant is zero for any two eigenfunctions of the regular Sturm-
Liouville problem (see exercise). Dividing by p, we have
X
2
X

1
− X
1
X

2
= 0.
(6.3.15)
The left hand side is
d
dx
X
1
X
2

,
therefore
X
1
X
2
= constant
which means that X
1
is a multiple of X
2
and thus they are the same eigenfunction (up to a
multiplicative constant).
The proof that the eigenfunctions form a complete set can be found, for example, in
Coddington and Levinson (1955). The convergence in the mean of the expansion is based
on Bessel’s inequality


n=0

b
a
(x)X
n
(x)σ(x)dx

2
≤  f
2
(6.3.16)
133

Completeness amounts to the absence of nontrivial functions orthogonal to all of the X
n
. In
other words, for a complete set
{X
n
}, if the inner product of with each X
n
is zero and if
is continuous then vanishes identically.
The proof of existence of an infinite number of eigenvalues is based on comparison theo-
rems, see e.g. Cochran (1982), and will not be given here.
The Rayleigh quotient can be derived from (6.1.8) by multiplying through by and
integrating over the interval (a, b)

b
a

X
d
dx
(pX

) + qX
2

dx λ

b
a
X
2
σdx = 0.
(6.3.17)
Since the last integral is positive (is an eigenfunction and σ > 0) we get after division by
it
λ =

(
b
a
(pX

)

dx

(
b
a
qX
2
dx
(
b
a
σX
2
dx
.
(6.3.18)
Use integration by parts for the first integral in the numerator to get
λ =
(
b
a
(X

)
2
dx

(
b
a
qX
2
dx
− pXX

|
b
a
(
b
a
σX
2
dx
,
which is Rayleigh quotient.
Remarks:
1.If q
≤ 0 and pXX

|
b
a
≤ 0 then Rayleigh quotient proves that λ ≥ 0.
2. Rayleigh quotient cannot be used to find the eigenvalues but it yields an estimate of
the smallest eigenvalue. In fact, we can find other eigenvalues using optimization techniques.
We now prove that any second order differential equation whose highest order coefficient
is positive can be put into the self adjoint form and thus we can apply the theorem we proved
here concerning the eigenpairs.
Lemma: Any second order differential equation whose highest order coefficient is positive
can be put into the self adjoint form by a simple multiplication of the equation.
Proof:
Given the equation
a(x)u

(x) + b(x)u

(x) + c(x)u(x) + λd(x)u(x) = 0,
α < x < β
with
a(x0,
then by multiplying the equation by
1
a(x)
e
(
x
α
b(ξ)/a(ξ)
134

we have
u

(x)e
(
x
α
b(ξ)/a(ξ)
+
b(x)
a(x)
u

(x)e
(
x
α
b(ξ)/a(ξ)
+
c(x)
a(x)
u(x)e
(
x
α
b(ξ)/a(ξ)
λ
d(x)
a(x)
e
(
x
α
b(ξ)/a(ξ)
= 0.
The first two terms can be combined
d
dx

u

(x)e
(
x
α
b(ξ)/a(ξ)

and thus upon comparison with (6.1.8) we see that
p(x) = e
(
x
α
b(ξ)/a(ξ)
,
q(x) =
c(x)
a(x)
p(x),
and
σ =
d(x)
a(x)
p(x).
Remark: For periodic boundary conditions, the constant in (6.3.14) is not necessarily zero
and one may have more than one eigenfunction for the same eigenvalue. In fact, we have
seen in Chapter 4 that if the boundary conditions are periodic the eigenvalues are
λ
n
=
2
L

2
,
= 012, . . .
and the eigenfunctions for n > 0 are
X
n
(x) =











cos
2
L
x n = 12, . . .
sin
2
L
x
= 12, . . .
However these two eigenfunctions are orthogonal as we have shown in Chapter 5. If in some
case, the eigenfunctions belonging to the same eigenvalue are not orthogonal, we can use
Gram-Schmidt orthogonalization process (similar to that discussed in Linear Algebra).
135

Download 1,53 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   30




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish