Hands-On Machine Learning with Scikit-Learn and TensorFlow


| Chapter 9: Unsupervised Learning Techniques



Download 26,57 Mb.
Pdf ko'rish
bet221/225
Sana16.03.2022
Hajmi26,57 Mb.
#497859
1   ...   217   218   219   220   221   222   223   224   225
Bog'liq
Hands on Machine Learning with Scikit Learn Keras and TensorFlow

272 | Chapter 9: Unsupervised Learning Techniques


Figure 9-22. Bayesian Gaussian mixture model
Prior knowledge about the latent variables z can be encoded in a probability distribu‐
tion 
p
(z) called the 
prior
. For example, we may have a prior belief that the clusters are
likely to be few (low concentration), or conversely, that they are more likely to be
plentiful (high concentration). This can be adjusted using the 
weight_concentra
tion_prior
hyperparameter. Setting it to 0.01 or 1000 gives very different clusterings
(see 
). However, the more data we have, the less the priors matter. In fact,
to plot diagrams with such large differences, you must use very strong priors and lit‐
tle data.
Figure 9-23. Using different concentration priors
The fact that you see only 3 regions in the right plot although there
are 4 centroids is not a bug: the weight of the top-right cluster is
much larger than the weight of the lower-right cluster, so the prob‐
ability that any given point in this region belongs to the top-right
cluster is greater than the probability that it belongs to the lower-
right cluster, even near the lower-right cluster.
Gaussian Mixtures | 273


Bayes’ theorem (
the latent variables after we observe some data X. It computes the 
posterior
distribu‐
tion 
p
(z|X), which is the conditional probability of z given X.
Equation 9-2. Bayes’ theorem
p
z X = Posterior = Likelihood×Prior
Evidence
=
p
X z
p
z
p
X
Unfortunately, in a Gaussian mixture model (and many other problems), the denomi‐
nator 
p
(x) is intractable, as it requires integrating over all the possible values of z
). This means considering all possible combinations of cluster parame‐
ters and cluster assignments.
Equation 9-3. The evidence p(

Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   217   218   219   220   221   222   223   224   225




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish