Guruh 101 kechki Talabaning F. I. Sh Normatova Durdona


-misol. Ushbu integral hisoblansin. โ—„ Ravshanki



Download 290,53 Kb.
bet2/3
Sana15.06.2022
Hajmi290,53 Kb.
#672301
1   2   3
6-misol. Ushbu

integral hisoblansin.


โ—„ Ravshanki,
.
Demak,

boโ€™lib, -butun son boโ€™ladi.


Berilgan integralda

almashtirish bajarib,


๐‘…(๐‘ฅ
๐‘š1 ๐‘›1, ๐‘ฅ
๐‘š2 ๐‘›2,โ€ฆ,๐‘ฅ
๐‘š๐‘˜ ๐‘›๐‘˜)๐‘‘๐‘ฅ koโ€™rinishdagi
integrallar
2.
๐‘…(๐‘ง
๐‘š1 ๐‘›1, ๐‘ง
๐‘š2 ๐‘›2,โ€ฆ,๐‘ง
๐‘š๐‘˜ ๐‘›๐‘˜)๐‘‘๐‘ฅ, ๐‘ง = ๐‘Ž๐‘ฅ+๐‘ ๐‘๐‘ฅ+๐‘‘ koโ€™rinishdagi integrallar. 3. Binomial differensiallarni integrallash.. 4. Chebishev teoremasi.
1. ๐‘…(๐‘ฅ
๐‘š1 ๐‘›1, ๐‘ฅ
๐‘š2 ๐‘›2,โ€ฆ,๐‘ฅ
๐‘š๐‘˜ ๐‘›๐‘˜)๐‘‘๐‘ฅ koโ€™rinishdagi
integrallar
โ€ข bu yerda R โ€“ uz argumentlarining ratsional funksiyasi. Irratsionallik argumentlarda namoyon buladi. Berilgan integralni ratsional funksiyani integrallashga keltiriladi. Buning uchun kuyidagi uzgaruvchini almashtirishni bajarish kifoya: ๐‘ฅ = ๐‘ก๐‘›, ๐‘ก = ๐‘ฅ ๐‘› , ๐‘‘๐‘ฅ = ๐‘›๐‘ก๐‘›โˆ’1๐‘‘๐‘ก. โ€ขBu yerda n soni ๐‘›1,๐‘›2,โ€ฆ,๐‘›๐‘˜ sonlarining eng kichik umumiy karralisi: n = EKUK(๐‘›1,๐‘›2,โ€ฆ,๐‘›๐‘˜),
1. ๐‘…(๐‘ฅ
๐‘š1 ๐‘›1, ๐‘ฅ
๐‘š2 ๐‘›2,โ€ฆ,๐‘ฅ
๐‘š๐‘˜ ๐‘›๐‘˜)๐‘‘๐‘ฅ koโ€™rinishdagi
integrallar
ะœะธัะพะป 1. ๐‘‘๐‘ฅ ๐‘ฅ + ๐‘ฅ 3 integralะฝะธ hisoblang. Bu yerda ๐‘ฅ = ๐‘ฅ 1 2, ๐‘ฅ 3 = ๐‘ฅ 1 3 ; 1 2 ๐‘ฃ๐‘Ž 1 3 kasrlarning umumiy maxraji 6. demak ๐‘ฅ = ๐‘ก6 :
๐‘‘๐‘ฅ ๐‘ฅ + ๐‘ฅ 3 = ๐‘ฅ = ๐‘ก6 ๐‘ก = ๐‘ฅ 6 ๐‘‘๐‘ฅ = 6๐‘ก5๐‘‘๐‘ก = 6๐‘ก5๐‘‘๐‘ก ๐‘ก3 +๐‘ก2 =6 ๐‘ก3๐‘‘๐‘ก ๐‘ก +1 = = 6 ๐‘ก2 โˆ’๐‘ก +1โˆ’ 1 ๐‘ก +1 = 2๐‘ก3 โˆ’3๐‘ก2 +6๐‘ก โˆ’6 ln ๐‘ก +1 +๐ถ = = 2 ๐‘ฅ + 3 ๐‘ฅ 3 +6 ๐‘ฅ 6 โˆ’6ln ๐‘ฅ 6 +1 +๐ถ.
๐Ÿ. ๐‘น(๐’› ๐’Ž๐Ÿ ๐’๐Ÿ, ๐’›
๐’Ž๐Ÿ ๐’๐Ÿ,โ€ฆ,๐’› ๐’Ž๐’Œ ๐’๐’Œ)๐’…๐’™ koโ€™rinishdagi
integrallar
โ€ข bu yerda ๐‘ง = ๐‘Ž๐‘ฅ+๐‘ ๐‘๐‘ฅ+๐‘‘.
๐‘Ž๐‘ฅ +๐‘ ๐‘๐‘ฅ +๐‘‘
= ๐‘ก๐‘›, ๐‘ก =
๐‘Ž๐‘ฅ +๐‘ ๐‘๐‘ฅ +๐‘‘
๐‘›
,
๐‘ฅ =
๐‘‘๐‘ก๐‘› โˆ’๐‘ ๐‘Ž โˆ’๐‘๐‘ก๐‘›
, ๐‘‘๐‘ฅ =
๐‘›(๐‘Ž๐‘‘ โˆ’๐‘๐‘)๐‘ก๐‘›โˆ’1 (๐‘Ž โˆ’๐‘๐‘ก๐‘›)2
.
๐Ÿ+. ๐‘น(๐’› ๐’Ž๐Ÿ ๐’๐Ÿ, ๐’› ๐’Ž๐Ÿ ๐’๐Ÿ,โ€ฆ,๐’› ๐’Ž๐’Œ ๐’๐’Œ)๐’…๐’™ koโ€™rinishdagi integrallar
โ€ขะœะธัะพะป 2. ๐‘‘๐‘ฅ (๐‘ฅโˆ’1)(๐‘ฅ+1)2 3 integralะฝะธ hisoblang. โ€ข ๐‘‘๐‘ฅ (๐‘ฅโˆ’1)(๐‘ฅ+1)2 3 = ๐‘ฅ+1 ๐‘ฅโˆ’1 3 ๐‘‘๐‘ฅ ๐‘ฅ+1 . โ€ข x ni almashtiramiz ๐‘ก = ๐‘ฅ+1 ๐‘ฅโˆ’1 3 , ๐‘ฅ = ๐‘ก3+1 ๐‘ก3โˆ’1 , ๐‘‘๐‘ฅ = 6๐‘ก2๐‘‘๐‘ก (๐‘ก3โˆ’1)2 ; bundan
๐Ÿ++. ๐‘น(๐’› ๐’Ž๐Ÿ ๐’๐Ÿ, ๐’› ๐’Ž๐Ÿ ๐’๐Ÿ,โ€ฆ,๐’› ๐’Ž๐’Œ ๐’๐’Œ)๐’…๐’™ koโ€™rinishdagi integrallar
๐‘ฅ +1 ๐‘ฅ โˆ’1 3 ๐‘‘๐‘ฅ ๐‘ฅ +1

Download 290,53 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
ัŽั€ั‚ะดะฐ ั‚ะฐะฝั‚ะฐะฝะฐ
ะ‘ะพา“ะดะฐ ะฑะธั‚ะณะฐะฝ
ะ‘ัƒะณัƒะฝ ัŽั€ั‚ะดะฐ
ะญัˆะธั‚ะณะฐะฝะปะฐั€ ะถะธะปะผะฐะฝะณะปะฐั€
ะญัˆะธั‚ะผะฐะดะธะผ ะดะตะผะฐะฝะณะปะฐั€
ะฑะธั‚ะณะฐะฝ ะฑะพะดะพะผะปะฐั€
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan boโ€™yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
boโ€™yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish