Gruppa tushunchasi



Download 66,07 Kb.
bet4/11
Sana13.06.2022
Hajmi66,07 Kb.
#666100
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
сқвмиапир

Gruppa yoyilmasi
gruppaning istalgan qism to`plamini sistema deb ataymiz. Bu sistema xusuisy xolda qism gruppa tashkil etishi yoki bitta elementdan iborat bo`lishimumkin. va sistemalarmnni olib, elementlardan tuzilgan sistemani ko`rinishda belgilaymiz. sistema va sistemalarning ko`paytmasi deyiladi. Bu yerda ekenloigi ravsha, chunki har bir Shunga o`xshash elementlardan tuzilgan sistema ko`rinishga ega bo`li, u va sistemalarning ko`paytmasini tasvirlaydi. Umuman, sistemalarni ko`pytirish nokommutativdir.
Masalan
uchunchi darajali simmetrik gruppaning
va
sistemalari uchun


bo`lib, demak, dir. Lekin istalgan uchta uchta sistemani ko`paytirish assotsiativ, chunki sistema elementlardan, sistema elementlardan tuzilgan bo`lib, ekenligi bizga malum. Shu sababli Umuman ,
sistemalar uchun
Xususiy xolda ko`rinishdagi sistemalar ham qaraladi.
1-teorema. gruppa va uining istalgan sistemasi uchun ushbu tengliklar o`rinli:
.
Isboti. Masalan ,
.
ni isbotlamiz. Chap tomonning istalgan elementi dagi va elementlarning ko`paytmasi sifatida yana ga qarashli. Aksicha o`ng tomonning istalgan elementini ko`rinishda tasvirlasak, va ga asosan bo`ladi.
Xususiy xolda , sistema ning bitta elementini ifodalasa, ni xosil qilamiz. Yana bo`lishi ham mumkin. Bu vaqtda dir. Buni shaklda yozamiz. Demak , umuman , , bu yerda ixtiyoriy natural son.
2-teorema. Agar va lar gruppa elementlari va bu gruppaning qism gruppasi bo`lsa, u xolda va sistemalar yo o`zaro teng bo`ladi, yoki bitta ham umummiy elementga ega bo`lmaydi.
Isboti. va biror umummiy elementga ega, yani
(1)
(bunda ) deb faraz qilsak, (1) ing ikkala tomonini chapdan ga ko`paytirib, 1-teoremaga asosan ushbu tenglikka kelamiz:
yoki .
Demak, va sistemalar teng bo`lmasa, ular bitta ham umumiy elementga ega bo`lmaydi, chunki aks xolda kelib chiqadi.
Bundan keyin gruppaga qarashli sistemalarning birlashmasini ko`pincha ko`rinishda belgilaymiz.
Gruppa nazariyasida kommutativ gruppaning amali “+” ishora bilan belgilanadi. Bunday holda sistemalar ko`rinishda yozilgani uchun , ularning birlashmasini, birinchi bobda qabul qilinganidek, ko`rinihsda yozamiz.

Download 66,07 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish