Задача. Постройте трапецию по заданным сторонам.
Решение. Анализ. Пусть трапеция АВСD построена, ВС= а, АD= b, AB= c, CD= d. Выполним параллельный перенос, определяемый вектором СВ. Тогда сторона СD перейдёт в BD . Треугольник АВD можно построить по трём сторонам c, d, b-a (b>a).
Затем продолжим отрезок АD на D D = a. Через точку В проведем прямую, параллельную АD и на ней отложим отрезок ВС= а. Соединим точки С и D. Полученная трапеция АВСD – искомая.
План построения очевиден.
Доказательство.
В четырехугольнике АВСD BC параллельна AD, значит ABCD – трапеция в которой AB = c, AD =b, так как AD= b – a + a. BD = CD = d.
Исследование. Треугольник ABD можно построить по трём сторонам, если c – d < b – a < c + d. При этом условии однозначно выполнимы и все остальные шаги построения. Если неравенство c – d < b – a < c + d не выполняется, то задача при выбранных данных не имеет решения.
1.4 Метод поворота
Поворотом плоскости вокруг точки О на угол называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 = .
Данный метод применяется к тем задачам, где либо части фигур сближаются в положение, удобное для построения, либо при заданных явно или косвенно центре и угле поворота требуется отыскать две соответственные точки, лежащие на данных или искомых фигурах.
Рассмотрим задачу: “Земельный участок квадратной формы был огорожен. От изгороди сохранились два столба на параллельных сторонах квадрата. Кроме того, остался столб в центре квадрата. Требуется восстановить границу участка”.
Анализ. Пусть ABCD — искомый квадрат, О — его центр, М и N— данные точки соответственно на сторонах АВ и CD (рис. 7). Если повернуть квадрат на 180° около его центра О, то он преобразуется сам в себя. Точка М займет некоторое положение М' на стороне CD, а точка N — некоторое положение N' на стороне АВ. После этого нетрудно уже построить прямые АВ и CD и восстановить искомый квадрат.
Рис. 7
Построение. 1) Строим точку М', симметричную М относительно 0, и точку N', симметричную N относительно О. 2) Строим прямые MN' и NM'. 3) Повернем построенные прямые около точки О на 90°. Четыре построенные прямые ограничивают искомый квадрат.
Доказательство опускаем.
Исследование. По смыслу задачи невозможен случай, когда точки М и N располагаются с точкой О на одной прямой, но не симметричны относительно О. Если точки М и N симметричны относительно О, то задача становится неопределенной. В остальных случаях задача имеет единственное решение.
Задача: Даны: угол АОВ и точка С внутри него. Построить равносторонний треугольник, одна вершина которого совпадает о точкой С, а две другие лежат на сторонах данного угла.
Анализ. Пусть ∆СDE - искомый. Сделаем поворот плоскости вокруг точки С на угол 60°: R60º (D) = E, R60º (OB) = O′B′, причем E = OB ∩ O′B′. Аналогично находим положение точки D: D = OB ∩ Rc-60º(OA).
Рис. 8
Построение очевидно. Доказательство и исследование предлагаем провести самостоятельно.
Do'stlaringiz bilan baham: |