Funktsiya limiti. Funktsiya limitining asosiy xossalari. Aniqmasliklar va ularni ochish



Download 397,92 Kb.
bet2/6
Sana03.06.2022
Hajmi397,92 Kb.
#633338
1   2   3   4   5   6
Bog'liq
Funksiya limiti. Funksiya uzluksizligi

1) yig’indining limiti. CHekli sondagi funktsiyalar algebraik yig’indisining limiti, qo’shiluvchi funktsiyalar limitlarining algebraik yig’indisiga teng, ya’ni va funktsiyalarning dagi limitlari mavjud bo’lsa,
(5)
2) chekli sondagi funktsiyalar ko’paytmasining limiti funktsiyalar limitlarining ko’paytmasiga teng, ya’ni
(6)
Natija: O’zgarmas ko’paytuvchini limit belgisidan tashqariga chiqarish mumkin, ya’ni,
(7)
3) Ikkita funktsiya nisbatining limiti, maxrajning limiti nњldan farqli bo’lsa, bu funktsiyalar limitlarining nisbatiga teng, ya’ni bo’lsa,
(8)
bo’ladi.
Limitlarni hisoblashda quyidagi limitlardan foydalaniladi:
; (9)
(10)
Bu limitlarga mos ravishda birinchi va ikkinchi ajoyib limitlar deyiladi.
3. Aniqmasliklar va ularni ochish
1.Aniqmasliklar. limitni hisoblashda funktsiyalar ch.kich.f. lar bo’lsa, nisbatga da (0/0) ko’rinishdagi aniqmaslik deyiladi. funktsiyalar ch.kat.f. lar bo’lsa, nisbatga da ko’rinishidagi aniqmaslik deyiladi. Xuddi shunga o’xshash aniqmasliklar

limitlarni hisoblashda kelib chiqadi. Bunday hollarda limitlarni hisoblashga aniqmasliklarni ochish deyiladi.
va ( ) ko’rinishdagi aniqmasliklarni ochishda quyidagi xossadan foydalaniladi: va funktsiyalar nuqtaning biror atrofidagi hamma nuqtalarda o’zaro teng bo’lsa, ularning dagi limiti ham teng bo’ladi.
Masalan, va funktsiyalar ning
dan boshqa hamma qiymatlari uchun teng, chunki

Yuqoridagi xossaga asosan,

bo’ladi, ya’ni

natijaga ega bњlamiz.
Funktsiyalarning limitini topishga bir necha misollar qaraymiz.
1-misol.

ekanligini funktsiya limitining ta’rifidan foydalanib isbotlang.
Yechish. Buni isbotlash uchun o’zgaruvchi miqdor va o’zgarmas miqdor orasidagi farq da cheksiz kichik funktsiya ekanligini ko’rsatish kifoya. Demak,

o’zgaruvchi miqdor da cheksiz kichik funktsiyadan iborat. SHunday qilib,
.
2-misol.

ekanligini isbotlang hamda va larning qiymatlari jadvali bilan tushuntiring.
Echish. bo’lganligi uchun cheksiz kichik miqdordir.
ni ayirmaga qo’yib,

natijaga ega bњlamiz.
cheksiz kichik funktsiya bo’lganligi uchun ham cheksiz kichik bo’ladi. SHunday qilib, isbot bo’ldi.
Endi yuqoridagi holatni argument, funktsiya qiymatlari jadvali bilan ko’rsataylik. Ma’lumki intiladi.



2

2,5

2,8

2,9

2,99

2,999





2

4

5,68

6,32

6,9302

6,993002



Bu jadvaldan ko’rinadiki, argumentning 3 ga yaqinlashib boruvchi qiymatlari uchun, funktsiyaning mos qiymatlari 7 ga yaqinlashib boradi, ya’ni cheksiz kichik miqdorga ayirmaning ham cheksiz kichik miqdori to’g’ri keladi. Yuqoridagi jadvalda bo’lib, holni qaradik. bo’lib, holni o’quvchiga mustaqil ko’rsatishni tavsiya qilamiz.
3-misol.
limitni hisoblang.
Echish. Algebraik yig’indining limiti, (5) formula, o’zgarmas ko’paytuvchini limit ishorasidan chiqarish (7) formulalarga asosan:

hosil bњladi.
Yuqoridagi misolda, limitlarning xossalariga asosan, argument ning o’rniga uning limitik qiymatini qo’yishga olib keldi.
4-misol.
limitni hisoblang.
Echish. Ikkita funktsiya nisbatining limiti (8) formula hamda oldingi misolda foydalanilgan limitlarning xossalarini qo’llasak,

bo’ladi.
Ratsional funktsiyaing limitini hisoblash shu funktsiyaning argument ning limitik qiymatidagi, qiymatini hisoblashga keltirildi.
Eslatma. elementar funktsiyalarning intilgandagi limiti ( aniqlanish sohasiga tegishli) funktsiyaning nuqtadagi qiymatiga teng bo’ladi. Masalan,
.
5-misol. limitni hisoblang.
Echish. da surat ham, maxraj ham nolga aylanib ko’rinish-dagi aniqmaslik hosil bo’ladi.
Surat va maxrajni formula yordamida chiziqli ko’paytuvchilarga ajratamiz. Bunda va lar kvadrat tenglamaning ildizlari. Demak,

bњladi.
6-misol. limitni hisoblang.
Echish. da ko’rinishdagi aniqmas ifodaga ega bo’lamiz. Bunday aniqmaslikni ochish uchun kasrning surat va maxrajini ning eng yuqori darajalisiga, ya’ni ga bo’lamiz, hamda limitlarning xossalaridan foydalansak

bo’ladi. Bunda lar da cheksiz kichik funktsiyalardir.
7-misol. limitni hisoblang.
Echish. da surat va maxraj 0 ga teng bo’ladi. Maxrajda irratsional ifoda mavjud, uni suratga o’tkazamiz, buning uchun kasrning surat va maxrajini ga ko’paytiramiz.

8-misol. limitni hisoblang.
Echish. bo’lganligi uchun

natijani olamiz.
9-misol. limitni birinchi ajoyib limitdan
foydalanib hisoblang.
Echish. , deb almashtirsak, bundan , bo’ladi.
SHuning uchun,
,
chunki
.
10-misol. limitni ikkinchi ajoyib limitdan foydalanib hisoblang.
Echish. da limitga o’tsak, ko’rinishdagi aniqmaslik kelib chiqadi. bilan almashtirsak, bu yerdan hamda da bo’ladi..Demak,

kelib chiqadi.
SHundayqilib, .
11-misol. limitni hisoblang.
Echish: da va bo’lib, ( ) ko’rinishdagi aniqmaslik kelib chiqadi.
.
Oxirgi ifoda da aniqmas ifoda bo’ladi. SHunday
qilib,
.
12-misol. limitni hisoblang.
Echish. da ko’rinishdagi aniqmaslik kelib chiqadi. Quyidagi shakl almashtirishni bajaramiz:

Oxirgi ifoda da ko’rinishdagi aniqmaslik bo’lib, 11-misoldagidek ning yuqori darajalisiga surat va maxrajini bo’lib,

bunda da bo’ladi.

Download 397,92 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish