7-teorema. Agar funksiyaning ikkinchi tartibli aralash xususiy hosilalari nuqtaning biror atrofida mavjud va shu nuqtada uzluksiz bo‘lsa,
u holda ular shu nuqtada teng bo‘ladi, ya’ni
Bunday teorema istalgan yuqori tartibli xususiy hosilalar uchun ham o‘rinli
bo‘ladi. Masalan, uzluksiz uchinchi tartibli xususiy hosilalar uchun
tenglik bajariladi.
funksiyaning nuqtadagi to‘liq differensiali ga birinchi tartibli to‘liq differensial deyiladi.
nuqtada funksiya ikkinchi tartibli uzluksiz xususiy hosilalarga ega bo‘lsin. U holda ikkinchi tartibli to‘liq differensial kabi aniqlanadi.
Uni topamiz:
Bundan
(16)
bu yerda
(16) formula simvolik ko‘rinishda
kabi yoziladi.
funksiya biror sohada aniqlangan va bo‘lsin.
1-ta’rif. Agar nuqtaning shundav atrofi topilsaki, bu atrofning barcha nuqtadan farqli nuqtalarida tengsizlik bajarilsa, nuqtaga funksiyaning maksimum (minimum) nuqtasi deyiladi.
Funksiyaning maksimum va minimum nuqtalariga ekstremum nuqtalar deyiladi. Funksiyaning ekstremum nuqtadagi qiymati funksiyaning ekstremumi deb ataladi
Ekstremum tushunchasi funksiya aniqlanish sohasining biror atrofi bilan bog‘liq. Shu sababli funksiya ekstremumga aniqlanish sohasining faqat ichki nuqtalarida erishadi va shu bilan birga funksiyaning ekstremumi lokal xarakterga ega bo‘ladi, ya’ni funksiya o‘zining aniqlanish sohasida bir nechta ekstremumga erishishi mumkin yoki umuman ekstremumga ega bo‘lmasligi mumkin.
1-teorema (ekstremum mavjud bo‘lishining zaruriy sharti). Agar funksiya nuqtada ekstremumga ega bo‘lsa, u holda bu nuqtada va xususiy hosilalar nolga teng bo‘ladi yoki ulardan hech bo‘lmaganda bittasi mavjud bo‘lmaydi.
nuqta funksiyaning ekstremum nuqtasi bo‘lsin. U holda bo‘ladi. Bu hosilalarni tenglama bilan berilgan sirtga nuqtada o‘tkazilgan urinma tekislikning
tenglamasiga qo‘ysak, yoki kelib chiqadi.
Bundan ekstrimum nuqtalarida sirtga o‘tkazilgan urinma tekislik Oxy koordinata tekisligiga parallel bo‘ladi degan xulosa kelib chiqadi. Bu xulosa ikki o‘zgaruvchi funksiyasi ekstremumi zaruriy shartining geometrik ma’nosini bildiradi.
Xususiy hosilalar nolga teng bo‘ladigan nuqtalarga statsionar nuqtalar deyiladi.
Xususiy hosilalar nolga teng bo‘ladigan yoki ulardan hech bo‘lmaganda bittasi mavjud bo‘lmagan nuqtalarga kritik nuqtalar deyiladi.
Kritik nuqtalarda funksiya ekstremumga ega bo‘lishi yoki ega bo‘lmasligi mumkin. Masalan, funksiya uchun nuqta kritik nuqta bo‘ladi, chunki bu nuqtada har ikkala xususiy hosila nolga teng va Bunda nuqtaning atrofida bo‘ladigan nuqtalar ham ( va chorak nuqtalari) bo‘ladigan nuqtalar ham ( va chorak nuqtalari) mavjud bo‘ladi. Shu sababli nuqta ekstremum nuqta bo‘lmaydi. Bunday nuqtaga minimaks nuqta deyiladi.