Фильтрация — переход раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны этой мембраны. Градиент гидростатического давления создается либо деятельностью сердца (фильтрация в артериальном конце капилляра всех органов и тканей организма, а также образование первичной мочи в почке), либо гладкой мускулатурой желудочно-кишечного тракта и мышечного пресса, обеспечивающих повышение гидростатического давления в полости желудка и кишечника, что способствует всасыванию веществ в кровь.
В процессе фильтрации поток воды через мембрану увлекает за собой растворенные вещества, свободно проходящие через полупроницаемую мембрану, при этом частицы переходят через мембрану в неизмененной концентрации. Это наблюдается, например, в артериальном конце капилляров всех органов и тканей организма, в собирательных трубках почки при переходе воды в мозговой слой почки. Растворенные частицы, например мочевина, переходят с жидкостью в интерстиций почки, аминокислоты и глюкоза — в интерстиций всех органов и тканей организма.
Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Имеется два варианта данного механизма транспорта.
Первый вариант, когда направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт), например перенос глюкозы в проксимальных канальцах нефрона в клетку канальца из первичной мочи. Глюкоза соединяется с белком-переносчиком, последний соединяется с Nа+, а Nа+, согласно концентрационному и электрическому градиентам, диффундирует в клетку канальца и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту — первично активно. Глюкоза обратно пройти не может и по механизму простой или облегченной диффузии (с переносчиком) выходит из клетки уже с другой стороны — в интерстиций, а затем в кровь согласно концентрационному градиенту. С помощью натрийзависимого транспорта всасываются аминокислоты и моносахара в кишечнике, если всасывание идет вопреки концентрационному градиенту; происходит обратный захват медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью Nа+ осуществляется согласно законам диффузии для Na+. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент Nа+. Глюкоза вместе с Nа+ идет в клетку даже в том случае, если ее концентрация в клетке больше, нежели в среде, если, конечно, электрохимический градиент Nа+ превосходит концентрационный градиент глюкозы.
Второй вариант натрийзависимого транспорта, когда перемещение транспортируемых частиц направлено в противоположную по отношению к движению Nа+ сторону, — это антипорт (противотранспорт). Этим обменным механизмом регулируется, например, содержание Са2+ в клетке, рН внутри клетки за счет выведения Н+-иона в обмен на внеклеточный Nа+. В большинстве клеток (а возможно, и во всех) внутриклеточная концентрация Са2+ на несколько порядков ниже внеклеточной. Концентрационный градиент Nа+ участвует в выведении Са2+ из клетки (в соотношении ЗNа+ : 1Са2+). В некоторых клетках (кардиомиоциты, гладкомышечные клетки) он играет главную роль. Об этом свидетельствует, в частности, следующий факт. Выведение Са2+ из клеток снижается, если удалить из внеклеточной среды Nа+. Это позволяет предположить, что Са2+ выводится из клетки в обмен на поступающий в нее Nа+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается он переносчиком-обменником. Исходным источником энергии этого процесса опять является градиент Nа+, который в конечном счете формируется за счет АТФ-зависимого активного транспорта Nа+. Поэтому при ингибировании Nа/К-АТФазы сердечными гликозидами, при уменьшении внеклеточной концентрации Nа+ и в бескалиевой среде.(когда Nа+ выводится из клетки недостаточно) Nа/Са-обменник блокируется, в результате чего увеличивается внутриклеточная концентрация Са2+, что ведет к увеличению силы сокращения сердца. Это свойство сердечных гликозидов используется в клинической практике.
Вторичный транспорт веществ играет важную роль в деятельности почки, например работа Nа/Н-обменника в канальцах почек. В этом случае выведение Н+ из клеток, выстилающих почечный каналец, в просвет канальца сопряжено с поглощением клетками Nа+ в отношении 1:1, что весьма важно: не приходится затрачивать энергию на выполнение электрической работы в процессе регуляции рН среды, поскольку происходит обмен двух одинаковых положительных зарядов.
Конкретный механизм работы переносчика-обменника неясен. Переносчик может транспортировать Са2+ и Н+ вопреки их электрическим и концентрационным градиентам только в том случае, если сам переносчик имеет собственный градиент, — его концентрация в клетке больше, чем вне клетки, причем этот градиент должен постоянно поддерживаться, иначе перенос Са2+ и Н+ прекратится. Полагаем, что выведение Са2+ и Н+ из клетки в результате диффузии Nа+ в клетку (противотранспорт) осуществляется следующим образом. На постоянно поступает в клетку, согласно своему электрохимическому градиенту, и транспортирует с собой (в комплексе) молекулы-переносчики с внешней стороны клеточной мембраны на внутреннюю, что и ведет к созданию их концентрационных градиентов, направленных из клетки. Са2+ и Н+ соединяются со своими переносчиками на внутренней стороне клеточной мембраны и транспортируются из клетки в виде комплексов согласно градиентам своих переносчиков. Именно поэтому, например, блокада Nа/К насоса ведет к накоплению Са2+ в кардиомиоцитах (транспорт Са2+ из клетки уменьшается). Это примеры вторичного транспорта вещества за счет первичного транспорта Nа+, который с помощью помпы выводится из клетки. Переносчики совершают челночные движения за счет работы Nа/К-насоса — вторично активно и транспортируют с собой Са2+ и Н+.
Таким образом, механизмы вторичного транспорта веществ весьма разнообразны. Что касается вторичного транспорта ионов, то он осуществляется, как правило, с помощью простой диффузии через специальные ионные каналы.
Do'stlaringiz bilan baham: |