Физиология клетки



Download 1,27 Mb.
bet46/98
Sana22.02.2022
Hajmi1,27 Mb.
#114125
1   ...   42   43   44   45   46   47   48   49   ...   98
Bog'liq
Методичка Возбудимые ткани

Саморегуляция в синапсе осуществляется с использованием функциональных обратных связей. Веществами, влияющими на эффек­тивность синаптической передачи, могут быть медиаторы, продукты их распада. В нервно-мышечном синапсе ацетилхолин, выделившийся в небольшом количестве в си­наптическую щель, может стимулировать более сильный выброс ацетилхолина из пресинаптического окончания по механизму обратной связи (самоусиление секреции). Высокие концентрации ацетилхолина в синаптической щели, напротив, угнетают секрецию его из пресинаптического оконча­ния.
Показано, что холин (продукт гидролиза ацетилхолина) в концентрации 10-4—10-5 М тормозит выделение ацетилхолина из преси­наптического окончания.

2.2.1.3. Особенности проведения возбуждения в химических синапсах


Проведение возбуждения в химическом синапсе имеет ряд характерных особенностей, отличающих этот процесс от такового в нервных волокнах:
Одностороннее проведение возбуждения. Синапсы функционально асимметричны и работают по принципу физиологического кла­пана, осуществляя одностороннее проведение возбуждения только в направлении от преси­наптического окончания в сторону постсинаптической мембраны. Это связано с тем, что медиатор выделяется из пресинаптичес­кого окончания, а взаимодействующие с ним рецепторы, имеющие ионные каналы, необ­ходимые для формирования синаптических потенциалов, находятся только на постсинаптической мембране.
Замедленное проведение возбуждения в синапсе (синаптическая задержка). Синаптическая задержка в нервно-мышечном синапсе составляет 0,5—1,0 мс (время от мо­мента поступления импульса к нервному окончанию до момента возникновения ПД в мышечном волокне). Это время затрачивает­ся на процессы секреции медиатора, диффу­зию его к постсинаптической мембране, дей­ствие на рецепторы, возникновение ионных токов, формирование постсинаптических потенциалов и их суммацию, способную вы­звать ПД.
Низкая лабильность. Синапсы имеют низкую лабильность (по сравнению с нервным волокном). Она равна около 100 Гц, что в 5—6 раз ниже лабильнос­ти аксона. Главной причиной низкой лабиль­ности синапса является синаптическая за­держка проведения возбуждения.
Трансформация ритма возбуждения в синапсах. Частота потенциалов действия, поступающих в синапс, обычно не совпадает с частотой ПД, генерируемых ней­роном, имеющим данный синаптический вход. Однако в нервно-мышечном синапсе быстрого мышечного волокна трансформа­ция ритма не выражена: один импульс нерв­ного волокна вызывает один ПД в мышечном волокне.
Высокая чувствительность к химическим агентам. Проводимость химических синапсов сильно изменяется под влиянием биологи­чески активных веществ, лекарств и ядов.
Синаптическое облегчение. Эти изменения синаптической передачи воз­буждения более детально изучены в нервно-мышечных синапсах, хотя имеют место и в синапсах ЦНС. Передача ПД через синапс, как было рассмотрено выше, сопровождается повышением концентрации Са2+ в пресинап­тическом окончании, которая снижается до межимпульсного уровня в течение несколь­ких десятков миллисекунд. Если следующий ПД попадает в этот следовый период, то вы­брос медиатора в синаптическую щель увели­чивается и формируется более высокоампли­тудный ВПСП (в нервно-мышечном синап­се — ПКП), что приводит к повышению эф­фективности синаптической передачи — си­ноптическому облегчению).
Активация пресинаптического окончания может осуществляться ретроградными по­средниками (окисью азота, арахидоновой кислотой, нейропептидами), которые выде­ляются постсинаптической клеткой. При передаче серии ПД через синапс концентра­ция Са2+ оказывается повышенной и вблизи постсинаптической мембраны. Активация при этом Са2+-зависимых ферментов (киназ, фосфатаз, протеаз) приводит к активации рецепторных белков и расщеплению белков, блокирующих рецепторы (например, белка фодрина, маскирующего глутаматные ре­цепторы). Облегчение синаптической пе­редачи может быть связано также с увеличе­нием синтеза рецепторов последовательно, их количества на постсинаптической мем­бране. Синаптическое облегчение является причиной оптимума частоты раздражения, открытого Н.Е.Введенским (1885) на нерв­но-мышечном препарате. В ЦНС синаптическое облегчение обозначается как фено­мен длительной потенциации. Он имеет важное значение в образовании условных рефлексов, формировании памяти и обу­чения.

2.2.1.4. Физиологические основы нарушений проведения возбуждения в нервно-мышечном синапсе


Зная физиологический механизм проведения возбуждения в нервно-мышечном синапсе легко представить возможные механизмы нарушений этого процесса.

Блокада проведения возбуждения по нервному волокн . При нарушении морфологической (повреждение) или функциональной целости нервного волокна возбуждение не достигает пресинаптической мембраны и возбуждение синапсом не передается. Примером нарушения функциональной целости нервного волокна является действие местных анестетиков (новокаин и др.), при применении которых снижается или исчезает чувствительность и двигательная функция в зоне анестезии.




Нарушение синтеза ацетилхолина. В нервно-мышечном синапсе ток­син возбудителя ботулизма подавляет синтез ацетилхолина в пресинаптическом оконча­нии, угнетая обратное поглощение холина из синаптической щели.


Нарушения высвобождения медиатора. Уже давно было известно, что химическая синоптическая передача нарушается при значительном снижении внеклеточной концентрации Са2+. Этот эффект примерно пропорционален четвертой степени, следовательно, для высвобождения одного кванта медиатора требуется реакция четырех ионов Са с активатором на внутренней стороне пресинаптической мембраны. Однако действие активатора зависит, по-видимому, еще и от потенциала, т. е. даже при достаточно высокой внутриклеточной концентрации Са2+, синхронное высвобождение медиатора требует деполяризации мембраны. Можно предполагать, что она влияет на активатор примерно таким же образом, как и на молекулу ионного канала. Следовательно, пресинаптические активные зоны с их участками связывания пузырьков и мембранными белками («частицами») (рис. 8) должны представлять собой аппарат для быстрого регулирования экзоцитоза посредством деполяризации мембраны и повышения концентрации Са2+. Рост концентрации Са2+, возможно, влияет на сократительные элементы цитоскелета или инициирует фосфорилирование функциональных белков.

При высоких частотах передачи им­пульсов через синапс (например, для нервно-мышечного синапса более 100 Гц) снижается эффективность синаптической передачи, что получило название «синаптическая депрессия» (пессимум Н.Е.Введенского) — блок прове­дения возбуждения в результате стойкой де­поляризации постсинаптической мембраны мышечного волокна, поскольку механизмы инактивации ацетилхолина не успевают сра­батывать (пессимальное торможение). Си­наптическая депрессия может развиться и при редкой, но длительной активации синап­са. Ее механизм на пресинаптическом уровне связывают с истощением запаса медиатора в пресинаптическом окончании, которого по расчетам хватает на 10 000 синаптических передач и который может иссякнуть в тече­ние нескольких минут. Другие механизмы депрессии связаны с накоплением высокой концентрации медиатора в синаптической щели вследствие того, что выброс медиатора в щель превышает возможности систем его разрушения и удаления. Высокий же уровень медиатора оказывает тормозящее влияние на секрецию его из пресинаптического оконча­ния. Происходит также уменьшение чувстви­тельности (десенситизация) рецепторов пост­синаптической мембраны к медиатору. Меха­низм десенситизации может быть связан с фосфорилированием рецепторов постсинап­тической мембраны, что в несколько раз снижает их сродство к медиатору. Другим ме­ханизмом десенситизации является эндоцитоз комплекса медиатор + рецептор внутрь клетки. Поглощенные рецепторы могут опять встраиваться в мембрану (при ослаблении стимула) или разрушаться в лизосомах. Эти процессы затрудняют развитие ПД в постсинаптической клетке и, следовательно, могут привести к блокаде синаптической передачи.


Блокада синаптической передачи антагонистами ацетилхолина. Синаптические антагонисты − это некоторые молекулы, которые, связываясь с синаптическими рецепторами, не вызывают изменений проводимости, поскольку, занимая рецептор, они препятствуют действию медиаторов или их агонистов. (Агонисты − это вещества, способные связываться с рецептором и полностью заменять медиатор. К агонистам ацетилхолина в концевой пластинке относятся, например, карбамилхолин или суберилдихолин). Связывание антагонистов может быть обратимым: спустя определенный период времени антагонист отделится от рецептора. Такие вещества называют конкурентными антагонистами, так как они конкурируют с медиаторами и их агонистами за участки связывания. К этим веществам относятся кураре и курареподобные вещества (диплацин, тубокурарин и др.). Эти вещества являются конкурентными антагонистами ацетилхолина: обратимо связываются с Н-холинорецепторами постсинаптической мембраны и блокируют действие на нее ацетилхолина. Яд кураре (d-тубокурарин) давно известен в Южной Америке. Индейцы использовали его для отравления своих стрел. По мере повышения его концентрации он блокирует все больше рецепторов, и эффект ацетилхолина ослабляется из-за уменьшения доступных мест связывания. Под действием кураре потенциал концевой пластинки снижается и при достаточной дозе яда уже не может достичь порогового уровня, т.е. мышца парализуется. Кураре и аналогичные вещества часто используются в качестве мышечных релаксантов при наркозе. Разумеется, во время полного мышечного расслабления требуется искусственное дыхание.


Другую форму такого расслабления обеспечивает антагонист ацетилхолина с пролонгированным действием, вызывающий устойчивую деполяризацию концевой пластинки. Этот деполяризующий мышечный релаксант инактивирует Nа+-каналы в мембране мышечного волокна и в результате предотвращает его естественное возбуждение (сукцинилхолин, декаметоний).


Действие антагонистов холинорецепторов, необратимо связывающихся с холинорецепторами.Необратимо связывает холинорецепторы и полностью блокирует передачу возбуждения через си­напс полипептид из яда змей α-бунгаротоксин.
Таким образом, действуя на холинорецептор вещества могут блокировать рецептор путем необратимого связывания с ним (α-бунгаротоксин) или длительно вытеснять ацетилхолин (кураре и курареподобные вещества); инактивировать (стойко деполяризовать) рецептор (сукцинилхолин, декаметоний).
Нарушение нервно-мышечной передачи под действием ингибиторов холинэстеразы. Значение фермента холинэстеразы для синаптической передачи в концевой пластинке хорошо заметно при его блокаде ингибиторами, Ряд веществ подавляют активность холинэстеразы, разрушающей ацетилхолин в синапти­ческой щели. Ингибиторы холинэстеразы используются в медицинской практике для устранения мышечного расслабления при наркозе (лечебные дозыпрозерина и эзерина), а также при заболеваниях типа миастении (см. ниже). При небольшой ее инактивации происходят умеренное накопление аце­тилхолина и облегчение синаптической пере­дачи. С другой стороны, известны отравления людей инсектицидами на основе этих ингибиторов. В основе действия фосфорорганических отравляющих веществ также лежит угнетение фермента холинэстеразы. При этих отравлениях возникают судороги - результат пролонгированной активации ацетилхолинергических синапсов, особенно в вегетативной нервной системе. При большой инактивации ацетилхолинэстеразы и значительном накоплении ацетилхолина синаптическая передача бло­кируется — развивается синаптическая деп­рессия и возможна смерть.

Химическое (фармакологическое) угнетение механизмов обратного захвата медиаторов или продуктов их распада. Во всех подробно изученных синапсах медиатор либо быстро разрушается, либо поглощается из синаптической щели через мембраны клеток. Мембранные транспортные механизмы особенно важны в случае адреналина, норадреналина, ГАМК и глутамата. В ацетилхолинергических синапсах транспортируется не сам ацетилхолин, а продукт его расщепления холин. Удаляемое вещество поступает в пресинаптическое окончание, что снижает потребность в ресинтезе медиатора. Подобно холинэстеразе, такие транспортные механизмы служат мишенями для действия многих важных лекарственных веществ, влияющих на синаптическую передачу.


Уменьшение количества синаптических рецепторов. Примером подобного нарушения может служить тяжелая миастения (myasthenia gravis) − относительно хорошо изученное глобальное нарушение функции нервно-мышечных синапсов. При этом заболевании тонус и сокращения скелетных мышц ослабевают; например, больные не в состоянии держать открытыми глаза или же с трудом передвигаются. Причина заключается в снижении плотности субсинаптических рецепторов ацетилхолина. Сам медиатор высвобождается в нормальных количествах, однако, связывается лишь с малым их числом; в результате потенциал концевой пластинки может не достигать порогового уровня, необходимого для возбуждения мышцы. Уменьшение количества функциональных ацетилхолиновых рецепторов обусловлено аутоиммунной реакцией: организм больного вырабатывает антитела, разрушающие или сокращающие время жизни собственных ацетилхолиновых рецепторов. При таком состоянии очень хорошо помогают ингибиторы холинэстеразы (амбеноний, неостигмин, пиридостигмин), позволяющие высвобождаемому в синапсах ацетилхолину действовать дольше, чем в норме, вызывая, таким образом, достаточную деполяризацию мембраны во время потенциала концевой пластинки.


2.2.2. Электрическая синаптическая передача возбуждения


После того как концепция химической синаптической передачи стала общепринятой, примерно между 1930 и 1950 гг., к большому удивлению специалистов выяснилось, что межклеточная передача возбуждения может осуществляться и электрическим способом [Furshpan,Potter,1959]. Две соседние клетки прилегают друг к другу так тесно, что сопротивление двух их мембран протекающему через них электрическому току сравнимо с сопротивлением остальной, внесинаптической области мембраны. При возбуждении 1-ой клетки натриевый ток (INa) входит в нее через открытые Nа-каналы и выходит через пока невозбужденные участки мембраны; при этом часть тока входит через участок мембранного контакта во 2-ю клетку, вызывая ее деполяризацию. Разумеется, здесь уровень деполяризации гораздо ниже - скажем, в 10 раз, чем в 1-ой клетке, однако он может оказаться выше порога генерирования потенциала действия во 2-ой клетке. Часто такая деполяризация подпороговая, и тогда 2-ая клетка возбуждается только в результате суммации синаптических потенциалов, возникающих в результате химической или электрической передачи от других клеток.
Итак, перечислим основные характеристики, которые отличают химическую синаптическую передачу от электрической.
1. В химическом синапсе постсинаптический ток генерируется за счет открывания каналов в постсинаптической мембране и обусловлен ионными градиентами постсинаптической клетки.

Download 1,27 Mb.

Do'stlaringiz bilan baham:
1   ...   42   43   44   45   46   47   48   49   ...   98




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish