Federal gosudarstvennoe uchebnoe predpriyatie Chair of the System of Artificial Intelligence



Download 7,58 Mb.
Pdf ko'rish
bet6/37
Sana14.06.2022
Hajmi7,58 Mb.
#667933
1   2   3   4   5   6   7   8   9   ...   37
Bog'liq
zhukov la reshetnikova nv uchebnoe posobie po distsipline pr

1.2 Teoreticheskie predposylki
vozmojnosti approksimatsii s pomoshchyu neyronnyx setey. Odnako, izvestno, chto
v teoreme Kolmogorova rech idet o tochnom predstavlenii funktsiy. Neyronnye seti -
netochnoe ustroystvo, reshayushchee zadachi approksimatsii, priblijeniya funktsii.
Zachastuyu popÿtka naibolee tochnogo obucheniya
characteristic function of neurons; function mojet bÿt proizvolnoy
18
Machine Translated by Google


neural network.
Dlya opisaniya algoritmov i ustroystv v neyroinformatike vÿrabotana
schodimosti on kompaktax. Proof Obobshchennaya theorem Stouna ob
linear subsurface in C (X), 1 ÿ E, functions iz E razdelyayut tochki in X i E zamknuto
otnositelno nelineynoy unarnoy operatsii f ÿ C (R). Togda E = C (X). Nazvannÿe vÿshe
teoremy yavlyayutsya chastyu teoreticheskogo osnovaniya
zaimstvovanii gotovÿe metody preobrazovany tak, chtoby ix mojno bÿlo
i approximation of functional mnogich peremennyx superpositsiyami i
primeneniya neyronnyx setey dlya resheniya prikladnyx zadach, v tom chisle
podkhodÿ k resheniyu vspomogatelnyx zadach, okazavshixsya vajnymi dlya
For preobrazovaniya old and development of new methods and algorithms
linear prostranstvam neprerÿvnyx functions, zamknutÿm otnositelno
1.3. Elements of artificial neural networks
universal approximation vozmojnostyax proizvolnoy
razdelax matematiki, sredi kotoryx metody optimizatsii, chislennÿe
and methods of training. The most common element of architecture
i sposoby sozdany dlya neyroinformatiki i v neyroinformatike. Pri
plotno v prostranstve vsex neprerÿvnyx funktsiy v topologii ravnomernoy
Obobshchennaya approximation theorem. Empty E ÿ C (X) - zamknutoe
neyrokompyuterov i neyroimitatorov, no ochen udobny dlya opisaniya
approximation of functions, which obobshchaet i klassicheskuyu theorem Stone
dlya ispolzovaniya neyronnyx setey i pozvolyayut govorit o vozmojnosti
realizovat na vysokoparallelnyx kompyuternyx sistemax. Krome togo, as it was said
above, neuroinformatics offered some new
spetsialnaya "schemotexnika", in which elementary devices - summators, synapses,
neurons and t.p. obÿedinyayutsya in neyronnÿe seti, prednaznachennÿe dlya
resheniya razlichnyx zadach. Ispolzuemaya v
users.
lineynymi kombinatsiyami funktsyon odnoy peremennoy. Ona otnositsya k
biological-ecological and ecological-medical.
lyuboy nelineynoy operatsii. The theorem is interpreted as confirmation of ob
Znachitelnaya chast apparata neyronnyx setey zaimstvovana v drugix
neyroinformatika ispolzuet spetsialnÿe sposoby opisaniya arhitektury
nelineynosti.
konstantÿ, lineynye funktsii i hotya by odnu nelineynuyu funktsiyu, to ono
methods, image recognition, mathematical statistics. Mnogie method
neyronnyx setey - synaps, summator, nelineynyy element, tochka vetvleniya. These
elements are not necessarily used during construction
19
Machine Translated by Google


podklyuchenÿ, a vesa synapsov odnovremenno slujat vesami adaptivnogo
apparatnoy realizatsii vÿpolnennÿe na etom yazyke opisaniya perevodyatsya na
iz-za nalichiya vector nastraivaemyx parameters ÿ.
kvadratichnaya zavisimost ÿ prosteyshaya nelineynost, trebuyushchayasya dlya
neyronnyx setey vovse ne obyazatelno realizuyutsya kak otdelnÿe chasti ili
vyxodnyx signals. Ee vychislenie takje mojno predstavit s pomoshchyu
neyronnÿe seti s kvadratichnymi summatorami imeyut bolee vÿsokuyu (v 2-4 raza)
skorost obucheniya i bolshuyu sposobnost k obobshcheniyu, odnako, slozhnost
realizatsii neyroimitatora vozrostaet mnogokratno.
nastraivaemÿy parameter, which nazÿvaetsya ves synapse or
signal.
postoyannyy edinichnyy signal. Here is the main - give on one of the entrances
signal x on vector parameters ÿ. Drugimi slovami, on vÿchislyaet lineynuyu
obyazatelno. Summator s takim dopolnitelnÿm vxodom nazÿvayut
signal x - vxodnoy signal - i vÿdaet na vyxode proizvedenie ÿx. Otdelno ot
form from the vector of the input signal X. Exit signal raven ÿÿQijXiXj. At the size of the
input signal n kvadratichnyy summator imeet n (n + 1) / 2 nastraivaemyx parameters
Qij, a takje n + 1 obÿchnyx parametrov W. Summator etogo tipa xorosho issledovan v
rabotax. Dokazano, chto
for representation of neural networks and their observations. When programmnoy i
budem oboznachat ego tak, kak pokazano na ris. 2. Adaptivnym nazÿvaem ego
rassujdeniy bÿvaet udobno vydelit this element (Fig. 4). Kak pravilo, nabor sinapsov
rassmatrivaetsya vmeste s summatorom, k kotoromu oni
yazÿki drugogo urovnya, bolee prigodnÿe dlya realizatsii. At this element
Dlya mnogix zadach polezno imet neodnorodnuyu lineynuyu funktsiyu
full class neyrosetevyx function. Experiments showed that
summatora. Vesa sets of synapses form a set of adaptive parameters,
Lineynaya svyaz - synaps - est liniya peredachi signal, imeet odin
blocks.

Download 7,58 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish