Fakulteti Axborot xavfsizligi


Turg’unlikning Gurvis mezoni



Download 0,67 Mb.
bet4/9
Sana07.04.2022
Hajmi0,67 Mb.
#534391
1   2   3   4   5   6   7   8   9
Bog'liq
Ahmadjoni diskretdan

2.Turg’unlikning Gurvis mezoni.
ABS ning xarakteristik tenglamasi berilgan bo’lsin:
A(R) =a0Pn+a1Pn-1+…+an=0 (9)
Shu xarakteristik tenglama koeffisientlaridan tuzilgan jadvalga Gurvis aniqlovchisi (determinanti) deyiladi.
Gurvis aniqlovchisini tuzishda quyidagi qoidaga rioya qilish kerak:
a) bosh dioganal bo’yicha hamma koeffisientlarni “a1” dan to “an” gacha o’sish tartibi bilan yozib chiqiladi.
b) bosh dioganalga nisbatan qatorlarning pastga tomon indekslari kamayuvchi, yuqoriga tomon indekslari o’sib boruvchi koeffisientlar bilan to’ldiriladi.
v) indekslari noldan kichik hamda “n” dan katta bo’lgan koeffisientlar o’rniga nollar yoziladi.
g) Gurvis aniqlovchisining eng yuqori tartibi xarakteristik tenglamaning darajasiga teng bo’ladi.
d) Gurvis aniqlovchisining oxirgi tartibi 0=a0n ga tengdir.
a1 a3 a5 a7 0
a0 a2 a4 a6 0
n = 0 a1 a3 a5 0
0 a0 a2 a4 0
……………..
0 0 0 0 an
Gurvis mezoni ta’rifi:
Agar a00 bo’lib,Gurvisning hamma aniqlovchilari noldan katta bo’lsa, u holda sistema turg’un bo’ladi, ya’ni a00 bo’lganda 1 0; 2 0; 3 0;…..n0 bo’lishi kerak.
n=an n-1 bo’lishi Gurvis aniqlovchisining tuzilish strukturasidan kelib chiqadi. Shunga ko’ra, agar n=an n-1=0 bo’lsa, sistema turg’unlik chegarasida bo’ladi. Bu tenglik ikki holda, ya’ni an=0 bo’lganda yoki n-1=0 bo’lganda bajarilishi mumkin. Agar an=0 bo’lsa, unda tekshirilayotgan sistema turg’unlik holatining aperiodik chegarasida bo’ladi(ya’ni xarakteristik tenglamaning bitta ildizi nolga teng bo’ladi).
Agar n-1=0 bo’lsa, unda tekshirilayotgan sistema turg’unlik holatining tebranma chegarasida bo’ladi (bunda xarakteristik tenglama juft mavxum ildizga ega bo’ladi).
Endi n=1,2,3,4 ga teng bo’lgan tenglamalar bilan ifodalangan sistemalar uchun Gurvis turg’unlik mezonining shartlarini ko’rib chiqamiz:
a) n=1, a0R+a1=0.
Bunda a00; 1=a10 turg’unlik sharti bo’ladi. Demak, birinchi tartibli sistemalar turg’un bo’lishi uchun xarakteristik tenglama koeffisientlarining musbat bo’lishi etarlidir.
b) n=2, a0R2+a1R+a2=0
bunda turg’unlik shartlari quyidagicha bo’ladi.
a00;1=a0
a1 0
2= =a1 a2- a0 0=a1 a20
a0 a2
Demak, ikkinchi tartibli tenglama bilan ifodalangan sistemalarning ham turg’un bo’lishi uchun xarakteristik tenglama koeffisientlarining musbat bo’lishi etarli shart hisoblanadi.
v) n=3, a0R3+a1R2+a2R+a3=0
Turg’unlikning zarur shartlari:
a00;1=a0
a1 a3
2= =a1 a2- a0 a30
a0 a2
3=a3 20.
Shunday qilib, uchinchi tartibli tenglama bilan ifodalangan sistemalarning turg’un bo’lishi uchun xarakteristik tenglama koeffisientlarining musbat bo’lishi etarli bo’lmay, bunda (a1 a2- a0 a3)0 tengsizlikning bajarilishi zarur shart hisoblanadi.
g) n=4, a0r4+ a1r3+ a2 r2+ a3 r+ a4=0

Download 0,67 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish