Экстремумы функций Содержание


Достаточные условия для точек условного экстремума



Download 72,72 Kb.
bet15/16
Sana20.03.2022
Hajmi72,72 Kb.
#503780
TuriЗадача
1   ...   8   9   10   11   12   13   14   15   16
Bog'liq
bestreferat-101287 (1)

6.5.Достаточные условия для точек условного экстремума.
В этом пункте также будем предполагать выполненными все предположения , наложенные на функции в пункте 6.2.Пусть
F= f0+ ifi
-функции Лагранжа (см.(6.11)) для функции f0 и уравнений связи(6.3).Пусть x(0) G удовлетворяет уравнениям связи (6.3) и является стационарной точкой функции Лагаранжа , т.е. точкой , координаты которой удовлетворяют системе уравнений (6.10) и (6.3). Нашей целью является получение метода , с помощью которого можно установить условия , достаточные для того , чтобы x(0) являлась точкой условного экстремума рассматриваемой задачи.
Заметим прежде всего , что если точка x G удовлетворяет уравнениям связи (6.3) , то
f= f(x)-f(x(0))=F(x)-F(x(0))= F (6.32)
Отсюда сразу видно , что если x(0) является точкой обычного экстремума для функции F, т.е. F не меняет знака в некоторой окрестности точки x(0), то x(0) является точкой условного экстремума для функции f0 .
Действительно , из (6.32) следует в этом случае , что приращение f0 для допустимых значений х , т.е. удовлетворяющих уравнениям связи , также не меняет знак, Это достаточное условие , однако , накладывает слишком сильное ограничение на поведение функции Лагранжа F(x) в рассматриваемой точке – она должна иметь обычный экстремум , что сильно сужает область возможного применения указанного условия при решении задач.Поэтому целесообразно получить более общий достаточный признак условного экстремума .
Пусть x(0)= (x(0)1,x(0)2,…,x(0)n) удовлетворяет уравнениям связи (6.3).Вернемся к рассмотрению функции (6.6) , т.е. функции g(x)=g(xm+1,…,xn) , получаемой из f0(x)= f0(x1,x2,…,xn) при условии , что являются x1,x2,…,xm функциями переменных xm+1,…,xn определяемых уравнениями связи (6.3) в некоторой окрестности точки x(0).Будем дополнительно предполагать , что f0(x ) и fi(x ) ,i=1,2,…,m дважды непрерывно дифференцируема в точке x(0).
Выше отмечалось (в пункте 6.2) , что x(0) является точкой условного (строгого) экстремума для функции f0(x) относительно уравнений связи (6.3) тогда и только тогда , когда x(0) является точкой обычного (строгого) экстремума для функции g(x).Поэтому , если например , в точке x(0) функция g(x) удовлетворяет достаточным условиям существования строгого экстремума,то в этой точке функция f0(x) имеет условный строгий экстремум относительно уравнений связи (6.3).Достаточные условия для обычного сторого экстремума были получены нами ранее .Для нашего случая они имееют вид :

  1. g(x(0) )

xi i=m+1,…,n; (6.33)
2)второй дифферециал
2g(x(0) )
d2g(x(0) )= -----------dxidxj (6.34)
xi xj
является положительно или отрицательно определенной квадратичной формой.
При выполнении этих условий x(0) является точкой строгого минимума или максимума для функции g(x).В силу сказанного выше указанные условия являются и достаточными условиями для того, чтобы x(0) являлось точкой условного строго минимума (максимума) для функции f0(x) относительно уравнений связи (6.3). Однако они неудобны для практического использования , так как требуют знания функции g(x).Поэтому , исходя из полученных достаточных условий условного строгого экстремума , выраженных посредством функции g(x) , получим достаточные условия того же экстремума , но выраженные только через функцию Лагранжа и уоавнений связи.
Прежде всего заметим , что в силу условия (6.4) система (6.29) разрешима, и притом однозначно, относительно dx1,…,dxm при произвольно фиксированных dxm+1,…,dxn .Систему (6.29), выражающую равенство нулю дифференциалов функции fi(x) в точке x(0):
d fi(x)=0, i=1,2,…,m
при выполнении условий (6.3) , будем записывать кратко в виде :
df=0 (6.35)
где
f=(f1,f2,…,fm)
Пусть x(0) является стационарной точкой для функции Лагранжа F(x).Это означает, что dF(x(0))=0, т.е. что в этой точке f0+ ifi=0.В теореме 2 показано, что в том случае x(0) является стационарной точкой для функции, т.е.
dg(x(0))=0 (6.36)
Поясним еще раз вывод этой формулы и покажем, что
d2g(x(0) )= d2F(x(0) ) df=0 (6.37)
Это равенство следует понимать как равенство функции n-m переменных dxm+1,…,dxn.В правой части равенства (6.37) остальные переменные dx1,…,dxm, которые входят в выражения написанных дифференциалов, определяются из системы уравнений (6.35) или, что равносильно (см. формулы (6.5))
dxk=d k(x1,x2,…,xn-m), k=1,2,…,m
Используя инвариантность формы первого дифференциала относительно выбора переменных и формулу (6.6), имеем
f0 (x(0) )
dg(x(0) )= -----------dxj
xj
Прибавим к этому равенству сумму (равную нулю) левых частей тождеств (6.29), умноженных соответственно на постоянные i, входящие в функцию Лагранжа F(x) (точнее, i-е равенство (6.29) умножается на постоянную i).Тогда, использовав условие (6.11), получим
F(x(0))
dg(x(0) )= -------[ f0 (x )+ ifi (x)] dxj = --------- dxj=0
xj x=x0 xj
Утверждение (6.36) доказано.
Равенство (6.37) доказывается аналогичным приемом.Прежде всего напишем второй дифференциал для функции g(x) в точке x(0):
2f0(x(0) ) f0(x(0) )
d2g(x(0) )= ---------dxjdxk + ----------- d2xj (6.38)
xj xk xj
Далее продифференцировав тождества, получающиеся в результате дифференцирования уравнений связи (6.3), т.е. тождества будем иметь в точке x(0) :
2f0(x(0) ) f0(x(0) )
d2g(x(0) )= -----------dxjdxk + ----------- d2xj =0 (6.39)
xj xk xj
i=1,2,…,n
Умножив i–е равенство (6.39) на постоянную i, входящую в функцию Лагранжа F(x), прибавим получившееся выражение к правой части равенства (6.38) ; тогда получим
2F(x(0) ) F(x(0) )
d2g(x(0) )= -----------dxjdxk + ----------- d2xj (6.38)
xj xk xj
где dxi, i=1,2,…,n удовлетворяет системе уравнений (6.35).Поскольку x(0) точка стационарная для функции Лагранжа, то второй член получившегося равенства обращается в нуль, и тем самым формула (6.37) доказана.
Будем говорить, что квадратичная форма d2F(x(0) ) является положительно (отрицательно) определенной квадратичной формой переменных dxi, i=1,2,…,n, при условии, что эти переменные удовлетворяют системе уравнений (6.35), если для любых dxi, i=1,2,…,n , удовлетворяющих этой системе уравнений и таких, что (dxi)2>0 выполняется неравенство d2F(x(0) ) >0 (соответственно d2F(x(0) ) <0)
Пусть точка x(0) удовлетворяет уравнениям связи (6.3) и является стационарной для функции Лагранжа (6.11) и пусть второй дифференциал функции Лагранжа в этой точке является положительно (отрицательно) определенной квадратичной формой переменных dx1,…,dxn, при условии, что они удовлетворяют системе уравнений (6.35).Тогда из (6.36) и (6.37) следует, что x(0) является стационарной точкой для функции g(x) и что второй дифференциал этой функции в точке x(0) является положительно (отрицательно) определенной квадратичной формой переменных dxm+1,…,dxn, и, следовательно, функция имеет в точке x(0) строгий минимум (максимум) , а значит, функция f0(x) имеет в точке x(0) условный строгий минимум (максимум) относительно уравнений связи (6.3).
Сформулируем полученный результат в виде теоремы.
Теорема 6.3: Если x(0) удовлетворяет уравнениям связи (6.3) и является стационарной точкой для функции Лагранжа (6.11) и если второй дифференциал функции Лагранжа в этой точке является положительно (отрицательно) определенной квадратичной формой переменных dx1,…,dxn при условии, что они удовлетворяют системе уравнений (6.29), то x(0) является точкой строгого минимума (максимума) для функции f относительно уравнений связи (6.3).
Таким образом, чтобы исследовать стационарную точку функции Лагранжа (6.11) на условный экстремум, надо исследовать на определенность квадратичную форму (6.37), т.е. второй дифференциал функции Лагранжа в этой точке при выполнении условий связи (6.3) (когда дифференциалы dxi, i=1,2,…,n связаны соотношениями (6.29)).При этом следует иметь в виду, что если второй дифференциал функции Лагранжа в рассматриваемой точке окажнтся положительно (отрицательно) определенным и без выполнения условий связи, то он будет и таковым , конечно, и при их выплнении.



Download 72,72 Kb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   16




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish