Table 1.
Determination of cobalt with PAN in the presence of foreign ions (taken 25
µg
of cobalt)
М
М/Со
М
М/Со
М
М/Со
Ag (I)
4000
Au (III)
400
Cr (VI)
2000
Zn (II)
20
Rh (III)
400
W (VI)
200
Pb (II)
20000
Ru (III)
400
W (VI)
1000
3
Cu (II)
4000
1
In (III)
4000
Te (VI)
4000
Mn (II)
20000
Ga (III)
20000
Mn(VII)
4000
Cd (II)
40000
Cr (III)
1000
Os (VIII)
400
Hg (II)
8000
La (III)
4000
F
-
Does not
interfere
Ca (II)
20000
Ti (IV)
2000
Cl
-
Does not
interfere
Ba (II)
20000
Ti (IV)
8000
2
J-
Does not
interfere
Mg (II)
40000
Zr (IV)
20000
Does not
interfere
Pd (II)
400
Se(IV)
2000
Does not
interfere
Be (II)
2000
Th (IV)
2000
Does not
interfere
Ni (II)
20000
Pt(IV)
2000
CH
3
COO
-
5000
№3/2021 year.
Technical science and innovation
22
Al (III)
40000
As (V)
1000
Does not
interfere
Fe(III)
4
Sb (V)
1000
EDTA
Does not
interfere
Fe(III)
400
2
V(V)
200
Thiourea
Does not
interfere
Tl(III)
2000
Nb (V)
1000
Wine acid
Does not
interfere
Bi(III)
40
U (VI)
400
Lemon acid
Does not
interfere
Bi (III)
8000
1
Mo (VI)
2000
Ascorbic acid
Does not
interfere
Where M is an ion or compound; M / Co - permissible mass ratio to cobalt by mass; 1 -
in the presence of 200 mg of thiourea; 2 - in the presence of 150 mg NaF in buffer; 3 - in the
presence of 200 mg of tartaric acid.
The developed method for the extraction-spectrophotometric determination of cobalt
(III) with PAN was tested in the analysis of model solutions composed according to the type of
rocks and ores of AMMC (Table 2), in salts and ores (Table 3).
To determine cobalt with PAN in model solutions, aliquots (1-4 ml) of the model
solution are taken into a 25 ml measuring cylinder with a ground stopper, and then they are fed
according to the method for determining cobalt in pure solutions.
Table 2.
Results of determination of cobalt (II) in model solutions, compiled according to the type of
rocks and ores of AGMK (n = 4; α = 0.95)
Name and
number of the
standard
sample
Certified chemical composition of a
standard sample,%
Found
cobalt,%
Relative
error,%
Cobalt-nickel
ore No. 1347-
18
SiO
2
– 31; TiO-0,192; Al
2
O
3
-7,1; Fe
2
O
3
-
6,03; MnO – 0,25; CaO-18,7; MgO-4,24;
Zn-0,039; Ni-1,57; Cu-0.39; As-5,77; S-0,4;
Co-1,13.
1,12
1,51
2,14
Skarn copper
ore No. 4818
SiO
2
– 33,77; Ti-0,882; Al
2
O
3
-5,47; Fe –
15,9; MnO – 0,36; CaO-29,75; MgO-0,66;
P
2
O
5
– 0,11; K
2
O – 0,13; Na
2
O – 0,01; CO
2
– 2,73; Cu-1,98; Mo- 0,02; Co- 0,43.
0,45
1,01
3,55
Ore rock No.
519
SiO
2
– 49,1; Ti-1,11; Al
2
O
3
-7,1; FeO-10,26;
Mn – 0,21; CaO-10,2; MgO-5,74; Na
2
O –
2,49; P
2
O
5
– 0,21; K
2
O – 0,7; W – 0,0007;
Nd – 0,0015; Zn-0,015; F – 0,023; Co-
0,046.
0,05
0,19
6,00
Chemistry and chemical technology
23
Ore rock No.
521
SiO
2
– 46,4; Ti-1,026; Al
2
O
3
-14,88; Fe
2
O
3
-
11,66; MnO – 7,0; Na
2
O – 2,82; K
2
O – 2,96;
P
2
O
5
– 1,01; W – 0,0001; Nd – 0,007; Zn-
0,012; As – 0,001; Co-0,046.
0,026
0,10
6,15
Table 3.
Results of determination of cobalt salts and ores (n = 4; α = 0.95)
Name and number
of the standard
sample
Certified cobalt
content,%
Found
cobalt,%
Relative
error,%
Steel
156
10,50
10,52
8,800
1,33
157
5,47
5,48
6,920
2,01
158
1,35
10,34
9,750
1,49
164
а
4,36
4,38
6,600
1,14
Ore
1347-18
1,130
1,150
1,735
2,40
3032-18
0,200
0,220
0,389
2,80
606-18
0,094
0,091
0,188
3,30
3597-18
0,170
0,156
0,372
3,70
9013-18
0,025
0,030
0,117
6,20
CONCLUSION.
Thus, the developed method is recommended for the analysis of ores,
concentrates, rocks, steel and other materials of complex composition without preliminary
separation of accompanying elements.
References
[1]
Vidka V. Divarova. Spectrophotometric investigations on liquid-liquid extraction systems
containing cobalt, 4-(2-pyridylazo)-resorcinol and tetrazolium salts.
Chemija
. 2013. Vol.
24. No 2. PP. 81–87.
[2]
Maheswari, V., Balasubra, N., Fresenius, N., Spectrophotometric determination of cobalt
with nitrosochromotropic acid.
J. Anal. Chem.
1995. Vol. 351. No 2-3. PP. 333-335.
[3]
Ali Z Zalov et al. Extraction-photometric determination of cobalt (II) with 5- (4-
Hydroxybenzylidene) -2,4- tiazolidindion in different objects.
Journal of Pharmacognosy
and Phytochemistry
. 2019. Vol. 8. No. 1. PP. 2612-2616
[4]
Benkhaya S., M'rabet S., Ahmed E. H. Classifications, properties, recent synthesis and
applications
of
azo
dyes.
Heylion
.
2020.
Vol.
6.
No.
1.
DOI:
10.1016/j.heliyon.2020.e03271
[5]
Kumar D. N., Garg B. S. Some new cobalt(II) complexes: Synthesis, characterization and
thermal studies.
Journal of Thermal Analysis and Calorimetry.
2002.
Vol.
69. PP. 607-616.
DOI:10.1023/A:1019976226610
[6]
Smirnova, T. D., Zhelobitskaya, E. A., Danilina, T. G., & Simbireva, N. A. Fluorescent
properties of doxycycline in the presence of silver nanoclusters.
Izvestiya vysshih uchebnyh
zavedenij. Seriya
«himiya
i himicheskaya
tekhnologiya».
Vol. 64. No. 1. PP. 34-40 (in
Russian) DOI:10.6060/ivkkt.20216401.6249
[7]
Mokshina N.YA., Pahomova O.A., SHatalov G.V., Lavlinskaya M.S. Extraction-
electrophoretic determination of vanillin in aqueous solutions and energy drinks using
polymers based on N-vinylformamide.
Izvestiya vysshih uchebnyh zavedenij. Seriya
Do'stlaringiz bilan baham: |