Differensial tenglamalar normal sistemasinig birinchi integrali,normal sistmaning yechimining mavjudligi va yagonaligi



Download 176,22 Kb.
bet6/8
Sana18.07.2022
Hajmi176,22 Kb.
#818350
1   2   3   4   5   6   7   8
Bog'liq
2DIFFERENSIAL TENGLAMALAR NORMAL SISTEMASINIG BIRINCHI INTEGRALI

Yechish: Berilgan sistemaga mos bir jinsli sistema tuzib olamiz

Bu sistemaga Eyler usulini qo’llaymiz

ko’rinishdagi xususiy yechimni izlaymiz:

Bu ifodani (*) ga qo’yamiz:

Bu sistemaga mos harakteristik tenglama tuzamiz:
harakteristik tenglama


uchun α , β larni izlaymiz:


xususiy yechim.
uchun α , β larni izlaymiz:


xususiy yechim.
Demak mos bir jinsli sistemaning umumiy yechim ko’rinishi quyidagicha:

Endi bundan sistemaning umumiy yechimini topamiz:
Buning uchun mos bir jinsli sistemaning umumiy yechimidan foydalanamiz:

Bunga varriatsialash usulini qo’llaymiz:
deb olamiz. Bundan

endi hosilalarini olamiz:

Demak

Bu sistemadan va larni topamiz.

Integrallaymiz:

va larni (**) ga olib borib qo’yamiz.

Bu berilgan sistemaning umumiy yechimi.
Misol-2

Bunga mos bo’lgan bir jinsli tenglamani tuzamiz.

buning umumiy yechimini topamiz.


(9)
(7) sistemani tuzamiz.

Endi bularni integrallaymiz.

shu formulaga asosan

va larni (9) ga olib borib qo’ysak

berilgan tenglamaning umumiy yechimiga ega bo’lamiz.

II.BOB. CHIZIQLI DIFFERENSIAL TENGLAMALAR SISTEMASINING UMUMIY YECHIMI HAQIDA TEOREMA.
2.1. Oʻng tomoni maxsus koʻrinishda boʻlgan chiziqli oʻzgarmas koeffisiyentli differensial tenglamalar sistemasi.
Oʻng tomoni maxsus koʻrinishda boʻlgan o`zgarmas koeffisiyentli chiziqli bir jinsli bo’lmagan differensial tenglamalar sistemasini umumiy ko’rinishi

dan iborat, bunda o’zgarmas sonlar. esa ko’rilayotgan oraliqda aniqlangan va uzluksiz funksiyadir.
O’zgarmas koeffisientli chiziqli bir jinsli bo’lmagan tenglamalar sistemasi quyidagi ko’rinishda yozamiz
(1)
chiziqli bir jinsli bo’lmagan tenglamaning xususiy yechimini ham funksiyalar ko’rinishdagi funk­siya­larning yig’indisi, ko’paytmasi va ularning yig’indisidan iborat bo’lsa, noma’lum koeffisiyentlar usuli bilan qidirish mumkin. Albatta, bu yerda ham (ayrim o’zgarishlar bilan) xuddi o’zgarmas koeffisiyentli tenglamalardagidek ish qilinadi. Agar bo’­lib, – tartibli ko’phad bo’lsa, (1) tenglamaning xususiy yechimi ko’rinshda emas,

ko’rinishda qidiriladi, bu yerda tartibli, noma’lum koeffisiyentli ko’phad; agar harakteristik tenglamaning ildizi bo’lmasa agar harakteristik tenglamaning ildizi bo’lmasa, s sifatida bu ildizning karraligini olish kerak. (9) dagi noma’lum koeffisiyentlar (9) ifodani (8) tenglamaga qo’yib, o’xshash hadlar koeffisiyentlarini tenglashtirish yordamida topiladi.
funksiya va funksiyalarni o’z ichiga olgan bo’lib, harakteristik tenglamaning ildizi bo’lganda ham (9) ifodadagi ko’phadning tartibi yuqoridagiga o’xshash aniq­lanadi.

Download 176,22 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish