Дифференциальные уравнения высших порядков


Нормальные системы линейных однородных дифференциальных



Download 0,66 Mb.
bet7/7
Sana25.05.2023
Hajmi0,66 Mb.
#943838
TuriРешение
1   2   3   4   5   6   7
Bog'liq
Лекции 6-7 (1)

Нормальные системы линейных однородных дифференциальных


уравнений с постоянными коэффициентами.

При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.




Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется линейной однородной, если ее можно записать в виде:
(2)

Решения системы (2) обладают следующими свойствами:


1) Если y, z, u – решения системы, то Cy, Cz, Cu , где C = const – тоже являются решениями этой системы.


2) Если y1, z1, u1 и y2, z2, u2 – решения системы, то y1 + y2, z1 + z2, u1 + u2 тоже являются решениями системы.

Решения системы ищутся в виде:


Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на ekx, получаем:

Для того, чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.:

В результате вычисления определителя получаем уравнение третьей степени относительно k. Это уравнение называется характеристическим уравнением и имеет три корня k1, k2, k3. Каждому из этих корней соответствует ненулевое решение системы (2):



Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2):



Пример. Найти общее решение системы уравнений:

Составим характеристическое уравнение:


Решим систему уравнений:

Для k1:
Полагая (принимается любое значение), получаем:

Для k2:


П олагая (принимается любое значение), получаем:
Общее решение системы:

Этот пример может быть решен другим способом:


Продифференцируем первое уравнение:


Подставим в это выражение производную у¢ =2x + 2y из второго уравнения.



Подставим сюда у, выраженное из первого уравнения:












Обозначив , получаем решение системы:


Пример. Найти решение системы уравнений

Эта система дифференциальных уравнений не относится к рассмотренному выше типу, т.к. не является однородным (в уравнение входит независимая переменная х).
Для решения продифференцируем первое уравнение по х. Получаем:

Заменяя значение z’ из второго уравнения получаем: .
С учетом первого уравнения, получаем:
Решаем полученное дифференциальное уравнение второго порядка.

Общее решение однородного уравнения:

Теперь находим частное решение неоднородного дифференциального уравнения по формуле




Общее решение неоднородного уравнения:



П одставив полученное значение в первое уравнение системы, получаем:



Пример. Найти решение системы уравнений:

Составим характеристическое уравнение:







  1. k = -1.


Если принять g = 1, то решения в этом случае получаем:




  1. k2 = -2.


Если принять g = 1, то получаем:




  1. k3 = 3.


Если принять g = 3, то получаем:

О бщее решение имеет вид:



Download 0,66 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish