Dekart ko’paytma. Binar munosabatlar. Funksiya


Misol. {(x; y): x, yN, y=x2} funktsiya bo’ladi. Ta’rif



Download 54 Kb.
bet5/5
Sana22.01.2022
Hajmi54 Kb.
#400438
1   2   3   4   5
Misol. {(x; y): x, yN, y=x2} funktsiya bo’ladi.

Ta’rif: y=f(x) shartni qanoatlantiruvchi tartiblangan (x; y) juftliklar to’plami funktsiyaning grafigi deyiladi.

Ta’rif. Agar f:AB akaslantirishda A=B, yani f:AA bo’lsa, u holda f akslantyirish to’plamni o’z-o’ziga akslantiruvchi almashtirish deyiladi.

y=f(x) da y element x elementning obrazi (aksi), x element esa y elementning, ya’ni f(x) ning proobrazi (asli) deb yuritiladi.



Ta’rif: Agar B to’plamning har bir elementi asliga ega bo’lsa, u holda f:AB aklantirishga syurektiv (ustiga) akslantirish deyiladi.

Misol. f:xx2 moslik barcha haqiqiy sonlar to’plamini manfiymas haqiqiy sonlar to’plamiga aklantirish syurektiv akslantirish bo’ladi.

Ta’rif: Agar B to’plamning har bir elementi bittadan ortiq asliga (proobrazga) ega bo’lmasa, u holda bunday akslantirishga in’ektiv (ichiga) akslantirish deyiladi.

Ta’rif: Agar f:AB akslantirish bir vaqtda syurektiv va inektiv bo’lsa, u holda f akslantirish biektiv akslantirish deyiladi.

Ta’rif:. A to’plamning har x elementini yana shu x elementga o’tkazuvchi (akslantiruvchi) akslantirishga ayniy (birlik) akslantirish deyiladi va uni ea:AA orqali belgilanadi.

Ta’rif: Agar f:AA va :AB akslantirish berilgan bo’lib, f(AB)=eA akslantirish o’rinli bo’lsa, u holda  akslantirish f akslantirishga chap teskari, f:(AB)=eB akslantirish o’rinli bo’lganda esa,  akslantirish f ga o’ng teskari akslantirish deyiladi. Agar f=f, ya’ni eB=eA bo’lsa u holda f akslantirish ga teskari akslantirish deyiladi va uni f1 orqali belgilanadi. Agar e(e: a→a) bo’lsa, u holda f va lar o’zaro teskari akslantirishlar deyiladi.

f: A→B akslantirish teskarilanuvchi bo’lishi uchun f ning o’zaro bir qiymatli (biektiv) bo’lishi zarur va yetarli. Bu mulohazaning isboti



da keltirilgan.

Adabiyotlar.

  1. R. N. Nazarov, B. T. Toshpo’latov, A. D. Do’simbetov. Algebra va sonlar nazariyasi. 1-qism. Toshkent. O’qituvchi. 1993 y. (35-39 betlar)

  2. Куликов Л. Я. Алгебра и теория чисел. Москва: Высш.шк. 1979 г. (стр 5-14).gan.

  3. www.ziyonet.uz

Download 54 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish