Definition (Definite Integral): Let be continuous on the closed interval


Fundamental Theorem of Integral Calculus (FTIC)



Download 2,52 Mb.
bet12/22
Sana30.12.2021
Hajmi2,52 Mb.
#197265
1   ...   8   9   10   11   12   13   14   15   ...   22
Bog'liq
reading4

Fundamental Theorem of Integral Calculus (FTIC)

The relation in exercise 1 above is an example of the Fundamental Theorem of Integral Calculus, but for polynomials. We will now begin to show that this theorem also holds for any continuous




First Fundamental Theorem of Integral Calculus: Let be continuous on the closed interval and let Then

  1. In particular,

  2. In particular,

  3. is continuous on

  4. |

Proof:


  1. Let and hold fixed. Since is continuous on , it is right-hand continuous at Therefore, given



Choose Then,




In summary, Thus, In particular,

  1. Let and hold fixed. Since is continuous on , it is left-hand continuous at Therefore, given



Choose Then,




In summary, Thus, In particular,


  1. Since differentiability implies continuity, items a) and b) imply that is continuous on


  1. Also, from items a) and b), we see that Thus,


Download 2,52 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish