Definition (Definite Integral): Let be continuous on the closed interval



Download 2,52 Mb.
bet20/22
Sana30.12.2021
Hajmi2,52 Mb.
#197265
1   ...   14   15   16   17   18   19   20   21   22
Bog'liq
reading4

Variations on Volume Problems

There are two variations in problems of solids of revolution that we will consider. The first factor that can vary in this type of volume problem is the axis of rotation. What if the region from the figure above was rotated about the y-axis rather than the x-axis? We would end up with a different function for the radius of the cross-sectional disk. The function would be written with respect to rather than , so we would have to integrate with respect to In general, we can use the following rule.

If the region bounded by the curves and the lines and is rotated about an axis parallel to the x-axis, write the integral with respect to x. If the axis of rotation is parallel to the y-axis, write the integral with respect to y.

T he second factor that can vary in this type of volume problem is whether or not the axis of rotation is part of the region that is being rotated. In the first case, each cross section that is generated will be a disk while in the second case, each cross section that is generated will be washer shaped. This creates two separate styles of problems:




Download 2,52 Mb.

Do'stlaringiz bilan baham:
1   ...   14   15   16   17   18   19   20   21   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish