Definition (Definite Integral): Let be continuous on the closed interval



Download 2,52 Mb.
bet17/22
Sana30.12.2021
Hajmi2,52 Mb.
#197265
1   ...   14   15   16   17   18   19   20   21   22
Bog'liq
reading4

Finding Area between TwoCurves

Slicing, Approximating and Integrating with Respect to the X-Axis
Consider two curves defined by the two functions continuous on the closed interval We want to compute the area of the region between these two curves from to .

Let be a partition of In this way, we slice the region into  subregions. Let denote the the area of the subregion. We then approximate by the rectangular area where is any sample point in Thus, Intuitively, we feel that as , these approximations become better. Therefore, we define , area of , by integrating over That is,





If we are given two curves defined by the two functions continuous on the closed interval then we employ the same process as above only with respect to the as shown in Figure 3 and Figure 4 below.



Download 2,52 Mb.

Do'stlaringiz bilan baham:
1   ...   14   15   16   17   18   19   20   21   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish