Definition (Definite Integral): Let be continuous on the closed interval



Download 2,52 Mb.
bet8/22
Sana30.12.2021
Hajmi2,52 Mb.
#197265
1   ...   4   5   6   7   8   9   10   11   ...   22
Bog'liq
reading4

Def: or

Def: or

Rewriting our last example using our new notation, we obtain If we look carefully at the result of this example of determining area under a graph, we are led to the interesting observation that there seems to be a relationship between the process of definite integration, which is just a fancy way of performing sums, and the process of differentiation. That is, we see that an antiderivative of the integrand is and the derivative of is . This is no accident. We will soon develop a theorem that generalizes this relationship to any continuous integrand over . This theorem is called the Fundamental Theorem of Integral Calculus.

The proof of the Fundamental Theorem of Integral Calculus will be divided into two parts. The first part, called the First Fundamental theorem of Integral Calculus, shows us how to differentiate a variable integral.

The second part, called the Second Fundamental Theorem of Integral Calculus, shows us that one can compute the definite integral of a continous function by using any one of its antiderivatives. This part of the theorem has many practical applications, because it tremendously simplifies the computation of definite integrals.

The first published statement and proof of a restricted version of the Fundamental Theorem of Integral Calculus was given by James Gregory (1638–1675). Isaac Barrow (1630–1677) proved the first completely general version of this theorem. Barrow's student Sir Isaac Newton (1643–1727) completed the development of the surrounding mathematical theory, while Gottfried Leibniz (1646–1716) systematized the knowledge into a calculus involving infinitesimal quantities.


Download 2,52 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish