Definition (Definite Integral): Let be continuous on the closed interval


Remark: The limit satisfies all the usual properties of limits. Remark



Download 2,52 Mb.
bet4/22
Sana30.12.2021
Hajmi2,52 Mb.
#197265
1   2   3   4   5   6   7   8   9   ...   22
Bog'liq
reading4

Remark: The limit satisfies all the usual properties of limits.
Remark: For , it is convenient sometimes to use one of the following:

  1. . The left end points of the subintervals corresponding to the regular partition

  2. The right end points of the subintervals corresponding the regular partition

  3. The midpoints of each subinterval ,

  4. is a maximum in assuming f is continuous on .

The corresponding Riemann sum is then denoted by called the upper Darboux sum of f over 3.


  1. is a minimum in assuming f is continuous on .

The corresponding Riemann sum is then denoted by , called the lower Darboux sum of f over 4
Note that we always have
There is an alternative but logically equivalent definition of the integral that is conceptually easier to understand and that uses Darboux sums.

Download 2,52 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   22




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish