Deep Boltzmann Machines



Download 273,49 Kb.
bet3/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
salakhutdinov09a

General Boltzmann
Deep Boltzmann Machines
Restricted Boltzmann

Machine

v
Machine




v
landscape. This is typical when modeling real-world dis- tributions such as datasets of images in which almost all of the possible images have extremely low probability, but there are many very different images that occur with quite similar probabilities.
Setting both J=0 and L=0 recovers the well-known re- stricted Boltzmann machine (RBM) model (Smolensky, 1986) (see Fig. 1, right panel). In contrast to general BM’s, inference in RBM’s is exact. Although exact maximum likelihood learning in RBM’s is still intractable, learning

Figure 1: Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary “hidden” features and the bottom layer represents a vector of stochastic binary “visi- ble” variables. Right: A restricted Boltzmann machine with no hidden-to-hidden and no visible-to-visible connections.

hidden and visible units are given by:


can be carried out efficiently using Contrastive Divergence (CD) (Hinton, 2002). It was further observed (Welling and Hinton, 2002; Hinton, 2002) that for Contrastive Di- vergence to perform well, it is important to obtain exact
samples from the conditional distribution p(h|v; θ), which is intractable when learning full Boltzmann machines.



p(hj = 1|v, hj) = σ
ΣD
i=1
ΣP


Wijvi +
ΣP
m=1\j
ΣD


Jjmhj
, (4)

    1. Download 273,49 Kb.

      Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish