Deep Boltzmann Machines



Download 273,49 Kb.
bet1/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
  1   2   3   4   5   6   7   8   9   ...   14
Bog'liq
salakhutdinov09a




Ruslan Salakhutdinov Department of Computer Science University of Toronto rsalakhu@cs.toronto.edu


Geoffrey Hinton


Department of Computer Science University of Toronto hinton@cs.toronto.edu

Abstract


We present a new learning algorithm for Boltz- mann machines that contain many layers of hid- den variables. Data-dependent expectations are estimated using a variational approximation that tends to focus on a single mode, and data- independent expectations are approximated us- ing persistent Markov chains. The use of two quite different techniques for estimating the two types of expectation that enter into the gradient of the log-likelihood makes it practical to learn Boltzmann machines with multiple hidden lay- ers and millions of parameters. The learning can be made more efficient by using a layer-by-layer “pre-training” phase that allows variational in- ference to be initialized with a single bottom- up pass. We present results on the MNIST and NORB datasets showing that deep Boltzmann machines learn good generative models and per- form well on handwritten digit and visual object recognition tasks.
  1. Introduction


The original learning algorithm for Boltzmann machines


units (Hinton, 2002). Multiple hidden layers can be learned by treating the hidden activities of one RBM as the data for training a higher-level RBM (Hinton et al., 2006; Hin- ton and Salakhutdinov, 2006). However, if multiple layers are learned in this greedy, layer-by-layer way, the resulting composite model is not a multilayer Boltzmann machine (Hinton et al., 2006). It is a hybrid generative model called a “deep belief net” that has undirected connections between its top two layers and downward directed connections be- tween all its lower layers.
In this paper we present a much more efficient learning procedure for fully general Boltzmann machines. We also show that if the connections between hidden units are re- stricted in such a way that the hidden units form multi- ple layers, it is possible to use a stack of slightly modified RBM’s to initialize the weights of a deep Boltzmann ma- chine before applying our new learning procedure.



Download 273,49 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7   8   9   ...   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish