Deep Boltzmann Machines



Download 273,49 Kb.
bet10/14
Sana24.06.2022
Hajmi273,49 Kb.
#698089
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
salakhutdinov09a

Deep Boltzmann Machines

2-layer BM 3-layer BM Training Samples
Figure 4: Left: Two deep Boltzmann machines used in experiments. Right: Random samples from the training set, and samples gen- erated from the two deep Boltzmann machines by running the Gibbs sampler for 100,000 steps. The images shown are the probabilities of the binary visible units given the binary states of the hidden units.






q(h2|v) v



j
Figure 3: After learning, DBM is used to initialize a multilayer neural network. The marginals of approximate posterior q(h2 = 1|v) are used as additional inputs. The network is fine-tuned by
backpropagation.


    1. Discriminative Fine-tuning of DBM’s



j
After learning, the stochastic activities of the binary fea- tures in each layer can be replaced by deterministic, real- valued probabilities, and a deep Boltzmann machine can be used to initialize a deterministic multilayer neural network in the following way. For each input vector v, the mean- field inference is used to obtain an approximate posterior distribution q(h|v). The marginals q(h2 = 1|v) of this
approximate posterior, together with the data, are used to
create an “augmented” input for this deep multilayer neu- ral network as shown in Fig. 3. Standard backpropagation can then be used to discriminatively fine-tune the model.
The unusual representation of the input is a by-product of converting a DBM into a deterministic neural network. In general, the gradient-based fine-tuning may choose to ig-
nore q(h2|v), i.e. drive the first-layer connections W2 to zero, which will result in a standard neural network net.
Conversely, the network may choose to ignore the input by driving the first-layer W1 to zero. In all of our experi- ments, however, the network uses the entire augmented in- put for making predictions.



Download 273,49 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish