Chekli-ayirmali tenglamalar


-misol. Quyidagi bir jinsli chiziqli-ayirmali tenglamaning umumiy yechimi topilsin. Yechish



Download 330 Kb.
bet4/4
Sana13.06.2022
Hajmi330 Kb.
#665700
1   2   3   4
Bog'liq
Chekli-ayirmali tenglamalar

1-misol. Quyidagi

bir jinsli chiziqli-ayirmali tenglamaning umumiy yechimi topilsin.
Yechish. Bu tenglamaning xarakteristik ko`phadi bo`lib, uning ildizlari 1 = 1 va 2 = -5 bo`lgani uchun umumiy yechim bo`ladi.
2-misol. Nol va birdan boshlanib, har bir keyingisi ikkita oldingilarining yig`in- disiga teng bo`lgan Fibonachchi sonlarini qaraylik: 0, 1, 1, 2, 3, 5, 8, 13, 21, ... Umumiy hadining ko`rinishi topilsin.
Yechish. Masala shartiga ko`ra

chekli-ayirmali tenglamani z0 = 0, z1 = 1dastlabki shartlarni qanoatlantiruvchi yechimi topilishi kerak. Xarakteristik tenglama
2- -1=О
ning ildizlari bo`lgani uchun umumiy yechim
bo`ladi. O`zgarmas с1 va с2 dastlabki shartlar, ya`ni

tenglamalardan topiladi:

demak,

3-misol. Ushbu

tenglamaning z0 =z1 =z3 = 0, z2 = -1 dastlabki shartlarni qanoatlantiruvchi yechimi topilsin.
Yechish. Xarakteristik tenglamani
4 + 2 3 + З 2 + 2 + 1 = 0
( 1 + + 1)2= 0 kabi yozib olib, uning

ildizlarini topamiz. Umumiy yechim esa:

bu yerda yangi ixiyoriy o`zgarmaslik.
Bu o`zgarmaslarni topish uchun dastlabki shartlardan foydalanib, quyidagi tenglamalarni tuzamiz:




Bundan esa

Shunday qilib,


FOYDALANILGAN ADABIYOTLAR:

  1. Соболев С.Л. Введение в теорию кубатурных формул.

–М.: «Наука». -1974г.

  1. Никольский С.М. Квадратурные формулы. 2-е изд. –М.: «Наука». -1972г.

  2. Крылов В.Н. Приближённые вычисления интегралов. –М.: «Наука». -1967г.

  3. Коробов Н.М. Теоретика – числовые методы в приближённом анализе. –М.: Физматгиз. -1963г.

  4. Лануош К. Практические методы прикладного анализа. –М.: Физматгиз. -1961г.

  5. Ермаков С.М. Методы Монте-Карло и сменные вопросы. 2-е доп. изд. –М.: «Наука». -1973г.

  6. Қобулов В.К. Функционал анализ ва ҳисоблаш математикаси. –Т.: “Ўқитувчи”. -1976й.

  7. Исроилов М.И. Ҳисоблаш методлари. –Т.: “Ўзбекистон”. -2203й.

  8. Шодиметов Х.М. Введение в теорию квадратурных формул. –Т.: Фан. -2005й.

  9. Шарипов Т.Х. Теоремы вложения в классах периодических обобшеных функций. Известия АН УзССР, серия физ.мат.наук, 1971г. №1.

Download 330 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish