Chapter 1: complex number


Conjugates, Modulus (Norm) and Argument of Complex Number



Download 0,77 Mb.
Pdf ko'rish
bet5/9
Sana19.02.2022
Hajmi0,77 Mb.
#457810
1   2   3   4   5   6   7   8   9
Bog'liq
LECTURE-1 Complex number S1 2021-2022

Conjugates, Modulus (Norm) and Argument of Complex Number 
Conjugates of 
(
z
)
 
The conjugate of 

z
is denoted by 
z
or a 
z

, which is same 
as 
z
but with the sign of the imaginary part flipped.
The 
geometric interpretation of the complex number and it 
is conjugate is shown in 
Figure 5

z
is the reflection of 
z
in the real axis. 
Given complex number 
Z
i
a
b
 
 then the 
conjugate of 
z
denoted as 
( )
( )
z
I
=
Re
z
z
m
i
a
b
 

(
z
is 
pronounced “
z
bar”)

Properties: 
 
 
1
2
1
2
1
1
1
2
1
2
2
2
2
2
a)
b)
,
,
c)
d)
,
e)
( ), and
( ),
,
.
0
2
2
1
1 0
2
z
z
z
z
z
z
z
z
z z
z
z
z
z
z
z
z
z
=
z
z
z
z
z
i
z
=
=
n
n
R
 
z
Re
e
a
b





 












  
  
Example 7
 
(
Use conjugate types of Complex Numbers
)
:
 
Express 
2
3
2
i
i


in the form 
a
b
i


Solution: 






2
3
2
2
2
3
2
6
4
3
2
3
2
3
2
3
2
3
2
3
2
9
6
6
4
6
4
3
2
4
7
4
7
9
4
13
13
13
.
2
2
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i






 









 










Modulus (Norm) and Argument of CN 
For any given complex number 
z
i
a
b
 
one defines the absolute value or modulus to be 
2
2
z
b
a



So the 
absolute value
(or 
modulus

z
of a complex number 
z
i
a
b
 
 is the distance from the origin to the point 
 
z
a
b

 
in complex plane. As 
Figure 6
shows, Pythagoras’ Theorem 
gives 

 

( )
( )
2
2
2
2
R
z
z
Im
z
e
i
b
a
a
b
 




 
 
b
Z
Im

 
a
Z
Re

Im
Re
0
2
2
r
a
b
z



 
arg
z


b
i
a
z
 
Figure 6
2

3

1
2
3
4
Im
2

1

2
3
4
1
3

0
Re
i
i

z
a
b
i
 
z
a
b
i
 
Figure 5 


IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
14
Properties:
1
1
2
2
2
,
0
0
0
1 2
1
2
,
1
2
1
2
a)
b)
c)
d)
e)
f)
z
z
z
z
if an
z
z
z
z
d
z z
z
z
z
z
z
onl
z
z
z
z
y
z
if




 






 
Note:







 
 
2
2
2
2
2
2
2
2
2
2
,
1
i
i
i
i
i
i
i
x
y
x
y
x x
y
y x
y
x
xy
xy
y
x
y
z z
i
y
z
x
z
x
y
 












 





So, 
2
z z
z
 
or 
2
2
z
z z
x
y

 


Definition 3 
(Norm)

The distance from 
z
i
a
b
 
 to origin 
0
 in the norm of 
z

2
2
z
a
b


. Norm and modulus are synonyms. 
Some Operations with 
(
z
)

To use complex numbers, we must know how to add, subtract, multiply, and divide them. We 
start by defining equality, addition and multiplication. 
Definition 4 
(
Equality and Basic Operations
)

a)
Equality:
Two complex number 
1
z
i
a
b
 
and 
2
z
i
c
d
 
are 
equal 
i
d
i
b
a
c

 
if 
and 
only 
if 
1
2
( )
(
)
=
R
Re
z
z
e
(
a
c


and 
1
2
( )
(
)
=
I
Im
z
z
m
(
b
d

), 
b)
Addition:
If 
1
z
i
a
b
 
and 
2
z
i
c
d
 
then 

 





1
2
=
=
z
+
z
b
i
i
d
c
c
b
i
a
a
d







Properties:




 
1
2
2
1
1
2
3
1
2
3
a)
=
b)
c)
, wher
0
0
0
0 0
e
,
+
+
+
+
=
+
+
z
z
z
z
z
z
z
+
z
z
=
z
z
=
c)
Multiplication:

 
 
 

a
c
ac
b
d
bd
+
+
+
i
i
i
+
b
a
c
d


=

 



1
2
i
i
=
i
i
i
=
a
c
ac a
c
ac a
b
d
d
b
bd
d
b
bd
i
i
=
c
ac
+
+
+
+
+
+
bd
+
+
a
+
b
c
i
d




 
Figure 7


2
z
 
1
2
z
z

 
2
z
 
1
z
 



IIUM, Faculty of Engineering, 
 
Department Engineering in Science 
Engineering Mathematics I
 
Semester 1, 2021/2022
 
Chapter I:
 
Complex Numbers
 
Lecturer
Associate Professor Dr. Abdurahim Okhunov
15
Properties:

 

 
1
2
2
1
1
2
3
1
2
3
1
1
a)
=
b)
c)
, where
1 0
,
z
z
z
z
z
z
z
z
z
z
=
z
z
=
=





d)
Division:
If 
1
z
i
a
b
 
and 
2
z
i
c
d
 
then 
1
2
z
z
is 













 

1
2
.
2
2
2
2
2
2
a
a
c
ac
z
c
a
b
b
d
bd
b
d
ac
c
a
c
c
bd
b
d
d
d
d
+
+
-
+
+
+
+
c
c
c
-
+
+
d
d
i
i
i
i
i
i
i
z
d
i
+
c









 



Note: 
1
1 2
1 2
2
2
2
2
2
z
z z
z z
z
z z
z


, which gives us another way of deriving the formula for dividing 
complex numbers. 
Example 8 
(
Addition of Complex Numbers
)
:
 
Carry out each operation and express the answer in standard form: 

 


 

)
,
)
a
b
3
2
4
2
6
5
0
i
0
i
i
i

 
 
 
Solution: 
a)
We could apply the definition of addition directly, but it is easier to use complex number 
properties. 

 

2
6
2
6
2
i
2
3
i
3
i
i




 

Remove parentheses

 

3
2 6
8
i
i
2
1
i
8

 


 

Combine like terms 
b)

 

5
0
5
0
i
4
0
i
0
i
i
4


 


 

Remove parentheses

 

4 0
i
0
i
5
4
5

   
 
Combine like terms 

Download 0,77 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish