Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet18/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   14   15   16   17   18   19   20   21   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

 Pattern-Based  Anomalies

Pattern-based anomalies are patterns and trends that deviate from their historical 

counterparts. In the taxi cab example, the pickup counts for the month of April were 

pretty consistent with the rest of the year. However, once the polar vortex hit, the numbers 

tanked visibly, defining a huge drop in the graph that was labeled as an anomaly.

Similarly, when monitoring network traffic in the workplace, there are expected 

patterns of network traffic that are formed from constant monitoring of data over several 

months or even years for some companies. When an employee attempts to download 

or upload large volumes of data, it will generate a certain pattern in the overall network 

traffic flow that could be considered anomalous if it deviates from the employee’s usual 

behavior.

If an external hacker decided to DDOS the company’s website (



DDOS, or a 

distributed denial-of-service attack, is an attempt to overwhelm the server that handles 

network flow to a certain website in an attempt to bring the entire website down or 

stop its functionality), every single attempt would register as an unusual spike in 

network traffic. All of these spikes are clearly deviants from normal traffic and would be 

considered anomalous.




Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   14   15   16   17   18   19   20   21   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish