Beginning Anomaly Detection Using



Download 26,57 Mb.
Pdf ko'rish
bet31/283
Sana12.07.2021
Hajmi26,57 Mb.
#116397
1   ...   27   28   29   30   31   32   33   34   ...   283
Bog'liq
Beginning Anomaly Detection Using Python-Based Deep Learning

type I 

error and type II error. These errors are used in hypothesis testing where you have 

a null hypothesis (which usually says that there is no relation between two observed 

phenomena), and an alternate hypothesis (which aims to disprove the null hypothesis

meaning there is a statistically significant relation between the two observations).



type I error is when the null hypothesis turns out to be true, but you reject it 

anyways in favor of the alternate hypothesis. In other words, a false positive, since you 

reject what turns out to be true to accept something that is false. A 

type II error is when 

the null hypothesis is accepted to be true (meaning you don’t reject the null hypothesis), 

but it turns out the null hypothesis is false, and that the alternate hypothesis is true. This 

is a false negative, since you accept what is false, but reject what is true.

For the context of the following definitions, assume that the condition is what you’re 

trying to prove. It could be something as simple as “this is animal sick.” The condition 

of the animal is either sick or healthy, and you’re trying to predict if it is sick or healthy. 

Here are some definitions:

• 

True positive: When the condition is true, and the prediction is  

also true

• 

True negative: When the condition is false, and the prediction is  

also false

• 

False positive: When the condition is false, but the prediction is true

• 

False negative: When the condition is true, but the prediction is false

Putting them together, you can form what is called a 


Download 26,57 Mb.

Do'stlaringiz bilan baham:
1   ...   27   28   29   30   31   32   33   34   ...   283




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish